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Abstract: In derivative development, by planning a reasonable design process in advance, 

the development scale can be suppressed. However, no systematic method to structure a 

process is established. This research proposes a method to structure a process so that the 

scale can be optimized. For this purpose, a hypothesis about the rationale of senior designers 

is made and implemented as a mathematical model on a computer to help designers structure 

a process. A process is described as sequences between tasks that are defined as functional 

measures and design parameters to achieve them, which are depicted in domain mapping 

matrix. Pareto optimal processes in three metrics depicting the rationale are suggested. The 

designer examines the contents of the processes among different scales and determines an 

appropriate process and thus the appropriate scale. Case studies on a continuously variable 

transmission confirm the effectiveness of the proposed method. 
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1 Introduction 

Derivative development is a common product development method, in which limited 

improvements are made to an existing product. As the range of changes from the existing 

product entails the scale of development, and thus the cost and development time, deciding 

the optimal range of changes is important. By planning a reasonable design process in 

advance, the development scale can be suppressed. In practice, the planning of a design 

process relies on the experience of senior designers and no systematic method is established. 

As product complexity increases, it becomes difficult to continue this current practice. 

Therefore, a method for logically structuring a design process is demanded. This research 

intends to propose a method to structure a design process so that the scale of derivative 

development can be optimized. For this purpose, a hypothesis about the rationale of senior 

designers is made and implemented as a mathematical model on a computer to help designers 

structure a design process. 

2 Related works 

Several studies have been performed on the management of design processes using matrices. 

Especially, process grouping and sequencing has been studied in numerous articles. Eppinger 

et al. (Eppinger et al., 1994) proposed a method to structure a design process based on input-

output relationships between tasks. By reordering the tasks according to the design process, 
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a group of tasks that must be performed simultaneously and a sequence of tasks are 

calculated. Carrascosa, Eppinger, and Whitney (Carrascosa et al., 1998) extended the method 

by incorporating the probability of change and its impact on a time basis that enables process 

lead time simulation. Alison and Papalambros (Alison and Papalambros, 2007) studied 

partitioning and coordination of a system design with a genetic algorithm. In this method, a 

system is divided into several subsystems while the amount of coordination between 

subsystems is minimized. 

Engineering changes have been studied as well. Eckert et al. (Eckert et al., 2006) proposed a 

method by means of design structure matrix (DSM) to predict change propagation on a 

product. In this method, the likelihood and impact of change between components are 

respectively shown in DSMs. Change propagation can be predicted by applying calculations 

of probability and expectancy. To handle change propagation in detail, it is desirable to 

describe products in multiple domains. Hamraz et al. (Hamraz et al., 2012) proposed change 

propagation modeling in multiple domains by applying a well-known FBS model (Function-

Behavior-Structure) as a product model to multiple-domain matrix (MDM). As a result, it is 

possible to decompose and express change propagation using functions, behaviors, and 

structures as media, and improve the explanation. Conversely, it is difficult to describe the 

model because the number of product components to be described increases and it is 

necessary to set the occurrence likelihood and the size of the influence between the 

components. 

In these works, DSM that describes products in a single domain is often employed to manage 

the design process. However, as Hamraz (Hamraz et al., 2012) described, handling multiple 

domains enriches the information obtained from the analysis. To discuss the development 

scale, it seems important to distinguish original change and the change choice. While the 

required changes are stable, design change choices that realize those required changes are 

optional. Initially, changes are requested for functional product measures. Next, changes are 

made on physical product features. Therefore, employing the House of Quality (used in 

quality function deployment (QFD)) seems relevant as it contains both domains and is widely 

acknowledged.  

3 Product and process model 

To describe a product, express the development scale, and determine a design process, a 
product model proposed by Oizumi et al. (Oizumi et al., 2014) is employed. In the proposed 
method, the product model is perceived as a House of Quality (used in QFD). 

3.1 Product model 

As shown in Figure 1, the following three element domains represent a product. 

- Functional metrics (fm): These are the observable metrics used to evaluate the product 

functionality. These cannot be directly designed, but are rather realized through the 

determination of design parameters. As an attribute of a functional metric, importance 

(imp) is attributed as a numerical value. 

- Design parameters (dp): These are elements of a product that illustrate its directly 

designed constraints. 

- Components (comp): These are the physical elements that constitute a product. Every 

design parameter belongs to one component. 
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A change in a design parameter affects functional metrics. To detail the relationship between 

these effects (hereinafter called “effect relationship”), the following two attributes are given 

as shown in Table 1. 

- Sensitivity: Sensitivity is an extent to which a functional metric responds to a design 

parameter change. 

- Characteristics: Characteristics are the directions to which a design parameter needs to 

be changed to improve a functional metric. 

3.2 Expression of development scale in the product model 

Derivative development comprises several functional metrics where change requests are 

issued. These are called change-requested functional metrics. Furthermore, design 

parameters to be changed during development are called change design parameters. The 

determination of which design parameters to adopt for implementing the requested changes 

implies the development scale. Thus, in the product model, the development scale is 

expressed as change design parameters. In addition, functional metrics affected by the 

alteration of change design parameters while the changes of them are not requested are called 

affected functional metrics. Thus, the product parts to be changed comprise change-requested 

functional metrics, change design parameters and affected functional metrics. These are 

collectively called the change implementation set (Figure 2). 

3.3 Expression of design process in the product model 

It is assumed that structuring the design process is to determine which design parameters 

should be derived to achieve the required level of each functional metric and order of 

 
Figure 1. The solar boat House of Quality 

Table 1. Possible values attributed to an effect relationship 

Sensitivity (Toward improvement of functional metric) 

1: not strong enough   3: strong enough 

Characteristics ↑: Larger the better   ↓: Smaller the better 

↑↓: Closer the better   ?: Unknown 

 

 

Figure 2. Change implementation set 
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determining design parameters. A design process is expressed based on the product model 

and can be visualized in a House of Quality as shown in Figure 3. The following three element 

domains represent a design process. 

- Design policy (Oizumi et al., 2014): A design policy is given as a set of preferences of 

effect relationships composed in a design parameter. For example, in Figure 4, “Screw 
size” is preferred to be increased for the purpose of improving “Maximum Speed” and 
“Acceleration”, but is not preferred to be decreased for the purpose of improving “Max 
reachable Distance low speed”, “Distance in high speed”, “Max reachable Distance low 
speed cloudy” and “Distance in high speed cloudy”. This is the “Screw size” design 

policy. 

- Task: A task indicates that the functional metrics of a task are realized by the design 

parameters of that task. For example, in Figure 5, in “Task1”, “Screw Number”, “Solar 

 

Figure 3. Expression of design process on the House of Quality 

 

Figure 4. Expression of design policy 

Figure 5. Expression of task and sequence 

 

Figure 6. Meaning of design policy and task 
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Panel Width” and “Solar Panel Length” are determined to realize “Row Stability low 
speed”, “Max reachable Distance low speed” and “Distance in high speed”. 

- Sequence: A sequence gives a preconditioned value for a task defined in a former task, 

thus an order between tasks. For example, in Figure 5, “Side Hull Width” is determined 
in “Task3” and is used as is in “Task1” and “Task3” precedes “Task1”. 

As explained above, a design policy shows by which design parameters a functional metric 

should be achieved. In contrast, an effect relationship inside a task means that the design 

parameter can be determined to achieve the functional metrics of the task. As shown in Figure 

6, when a preferred effect relationship is inside a task, a design parameter that should be 

determined to achieve a functional metric can be determined in that manner, which is 

favorable. Therefore, a design process would be improved if more preferred effect 

relationships are included in tasks. 

4 Proposed method 

Based on the product model, candidates of a design process are explored for a certain 

development scale. Optimum processes are obtained for several development scales. By 

examining processes, designers can determine the proper development scale. Here, change 

implementation sets are prepared by designers. Next, a computer explores the optimum 

design process structure for each change implementation set. Examination of optimum design 

processes of the scales and the development scale determination is left to designers. 

4.1 Determining the design policy (Oizumi et al., 2014) 

First, the design policy is determined for a change implementation set. In practice, the design 

policy is something determined by a designer. However, the design policy may differ by the 

development scale. As the proposed method explores processes for several development 

scales, it is essential to establish a design policy for each scale, which requires significant 

effort to describe. Therefore, the design policy is calculated in this method. 

To determine preferences of effect relationships, risks need to be calculated. Risk means the 

risk of negative effects on other functional metrics that may be caused by a change in the 

corresponding design parameter. Initially, each design parameter is judged whether it causes 

tradeoffs among functional metrics. In the case where a design parameter does not cause any 

tradeoff, those effect relationships have no risks. If it causes tradeoffs, those effect 

relationships have risks. To determine the level of risk, dominant effect relationship(s) need 

to be specified. It is assumed that the dominant factors of determining a design parameter are 

the sensitivity and importance of a functional metric. Thus, as shown in Figure 7, dominance 

of effect relationships is calculated as sensitivity multiplied by the functional metric 

importance. Effect relationship(s) with the highest dominance are specified as dominant 

relationship(s) and its characteristics become the dominant direction. If the characteristics of 

an effect relationship comply with the dominant direction of the corresponding design 

parameter, the effect relationship has low risk, otherwise it has high risk. 

By using sensitivity and risk, preference is determined. For the first calculation, preference is 

given in ordinal scale of zero to two as seen in Table 2. For example, if an effect relationship 

has low risk and its sensitivity is one, the preference is calculated as one. For the second 

calculation, first round results are recalculated as seen in Table 3 to ensure that there is at 
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least one preferred effect relationship for each functional metric. The left side of Table 3 

shows maximum and minimum preference values of effect relationships connected to a 

functional metric. The right side of Table 3 shows the recalculated preference value. For 

example, where maximum and minimum values for a functional metric are one and zero, 

an effect relationship whose first round preference value was one finally has “preferred” 
as a preference value. 

4.2 Exploration of an appropriate design process 

Structures of a design process are explored by dividing change implementation sets into 

tasks and changing their sequences upon calculated design policy. To evaluate design 

processes, the following three metrics are defined. 

- Appropriateness of dp affiliation: When a preferred effect relationship is included in a 

task, it means that the preferred design parameter determined for the functional metric 

is appropriately affiliated to the task determining the functional metric. Thus, the more 

preferred effect relationships that are included in tasks, the more appropriate the 

process is. Arai (Arai, 2016) used the modularity (Newman, 2004) as a metric of 

cohesion when clustering effect relationships. Employing this, the modularity of 

preferred effect relationships is used as a metric. 

 

Figure 7. Calculation of risk 

Table 2. First round calculation of preference based on risk and sensitivity 

 Sensitivity: 3 Sensitivity: 1 

No Risk 2 1 

Low Risk 2 1 

High Risk 0 0 

Table 3. Second round preference calculation 

For each functional metric Preference of each effect relationship 

Max Min 2 1 0 

2 0 Preferred Controversial Not Preferred 

2 1 Preferred Controversial N/A 

2 2 Preferred N/A N/A 

1 0 N/A Preferred Not Preferred 

1 1 N/A Preferred N/A 

0 0 N/A N/A Preferred 

 



Komano, Yuichi; Oizumi, Kazuya; Katsu, Fuyuku; Hattori, Yasushi; Miyoshi, Hiroyasu; 

Aoyama, Kazuhiro  

DSM 2020 39 

- Physical Manageability: Design reviews are often conducted by teams that are 

composed for components. Thus, the process management becomes more difficult 

when numerous components are involved in a task. Therefore, the average number of 

components in tasks are used as a metric.” 

- Rework Risk: When a preferred effect relationship is outside of tasks, it means that the 

design parameter that has a major effect cannot be used for achieving the functional 

metric. Thus, the existence of a preferred effect relationship possibly becomes a cause 

of reworks. Eppinger (Eppinger et al., 1994) proposed that in DSM relationships right 

above the diagonal possibly becomes a cause of reworks. Employing this, the number of 

preferred effect relationships right above the diagonal is used as a metric. 

It is assumed that the experienced designers structure a design process to be Pareto optimal 

for these three metrics. Because the solution space could be so large, a hot start technique 

is employed. First, the optimal design process for “Appropriateness of dp affiliation”, 

which seems to prevail among the metrics, is deduced. Then, neighborhoods are explored.  

As shown in Figure 9, tasks are determined by maximizing the modularity of preferred 

effect relationships. First, a binary matrix of a change implementation set is constructed by 

depicting only preferred effect relationships. The binary matrix is seen as a monopartite 

graph regardless of the functional metric or design parameter. The Newman method 

(Newman, 2004) is applied to deduce tasks that maximize the modularity. Then, As shown 

in Figure 10, sequences between tasks are decided by the number of effect relationships 

between them. Tasks are ordered so that a large number of the effect relationships would 

become a prior task to a posterior task. Thus, the rework risk would be minimal under a 

given set of tasks. 

Finally, multi-objective optimization is performed by exploring neighborhoods from the 

deduced design process. For every step, a new design process is randomly produced from 

each existing design process. When randomly producing a process, as shown in Figure 11, 

one functional metric or design parameter is randomly selected and moved to another 

randomly selected task. In this way, a new task configuration is determined. Then tasks are 

sorted in the sequence so that the rework risk is minimized. Inferior solutions are culled in 

a specified number of steps. The exploration is terminated when a determined number of 

processes are explored. The designer examines the contents of the obtained design 

processes and determines an appropriate design process. 

 

Figure 8. Three viewpoints to evaluate a design process 
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4.3 Examining design processes to determine development scale 

An appropriate design process is structured for each development scale that is determined 

as above. Finally, the designer determines the appropriate development scale by examining 

the contents of processes among different development scales. 

5 Results and discussion 

The effectiveness of the proposed method was verified on the Continuously Variable 

Transmission (CVT) in the following two test cases. The House of Quality of the CVT 

comprises 102 functional metrics, 12 components, and 162 design parameters. 

5.1 Validity of the design process derived by the proposed method 

In this test case, for nine functional metrics that have been required to change, 49 design 

parameters (entailing development scale) were selected, which concomitantly decide 

 

Figure 9. Calculation of task of the best design process about “Appropriateness of dp affiliation” 

 

Figure 10. Calculation of sequence of the best design process about “Appropriateness of dp affiliation” 

 

Figure 11. Producing new design process at random 
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affected functional metrics. These functional metrics and design parameters compose a 

change implementation set. Next, design processes were explored, and from the obtained 

quasi-optimum processes, the designer determines the appropriate design process by 

examining details of the processes. As there were a large number of candidate processes, 

the designer arbitrarily selected the processes to be examined. As the process structure of 

the Pareto solutions are quite similar to each other, even the arbitrary selection potentially 

avoids bias. However, there is room for improvement. 

By comparing the design process derived by the proposed method with the actual 

designer’s cognition, the validity of a design process derived by the proposed method was 

verified. As shown in Figure 12, it was confirmed that several structures were consistent 

with the designer’s cognition while some parts are left inconsistent. Thus, the design 

processes derived by the proposed method have a certain validity. For example, the process 

parts consistent with the designer were that the functional metrics related to power are 

realized by the control system design parameters. The functional metrics related to the 

driving force are realized by the design parameters of the forward/reverse switching 

mechanism, and these tasks are performed upstream of the design process. 

The part inconsistent with the designer was that functional metrics, which are a prerequisite 

for installing the CVT in the vehicle, are realized downstream. From the designer's 

cognition, these functional metrics are designed mostly upstream. In practice, these 

functional metrics, which are a prerequisite for the installation, are handled differently from 

other functional metrics. In contrast, they are included in functional metrics without 

distinguishing them by the property. Therefore, it is considered that this problem can be 

solved by treating a prerequisite as a different element type and tailoring the proposed 

method to handle the difference. 

5.2 Verification of ability to support optimization of development scale 

In this test case, for the nine change-requested functional metrics, three different change 

implementation sets that respectively comprise 49 (small-scale), 79 (middle-scale) and 120 

(large-scale) change design parameters were compared. 

 

Figure 12. Design process derived by the proposed method 

 

Figure 13. Design processes for three scales 

Match

Task：fms related to power are realized by dps of the control system

Task：fms related to the power / driving force are realized by dps of the start / rearward travel system

Not match

Task：fms, which are a prerequisite for installing and arranging the CVT in the vehicle, are realized

Task : 3 fm are realized by 3 dps

scale : small scale : middle scale : large
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By comparing the quasi-optimum design processes among development scales, the ability of 

the proposed method to support the scale optimization was verified. As shown in Figure 13, 

the contents of the design processes were different among development scales. For example, 

in the “small-scale” and “large-scale”, there was a task that three functional metrics trading 
each other are realized by one design parameter, which is unreasonable. Therefore, it was 

considered that “medium-scale” is the most appropriate development scale among the three 
tested scales. As demonstrated above, the development scale affects the design process 

feasibility. By examining details of the obtained design processes for given development 

scales, a designer could determine the most reasonable process, thus determining the proper 

development scale as well. 

6 Conclusion 

Through the verification above, it was confirmed that an appropriate design process could be 

derived by optimization in three metrics; whether design parameters are properly affiliated to 

functional requirements; each task does not handle too many components; and risk of rework 

is minimized. By incorporating a design policy, which may be affected by the scale of 

development, it was possible to compute the proper affiliation changes of design parameters. 

It results in different process structures among development scales. As the process structures 

are given as a combination of functional measures and design parameters realizing them, it is 

possible for designers to examine the feasibility of the processes. Therefore, the proposed 

method can support the development scale optimization. 
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