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Abstract  

In the early phase of product development, uncertainty may be treated by a set-based design 

method relying on so-called solution spaces. In this approach, all relevant system requirements 

are used to generate interval-type component requirements that are sufficient for reaching the 

overall design goal while allowing for design flexibility in a distributed component 

development process. The product of these interval-type requirements on component level is 

defined as solution box. The aim is not to find an optimal design, but to maximize the solution 

box that guarantees compliance with the system requirements. Unfortunately, with this 

approach only inequality-type requirements on the system level can be treated. However, in 

mechanical systems design it is often necessary to consider equality-type requirements, for 

example when mechanisms need to satisfy certain kinematic specifications. This paper 

proposes several approaches to incorporate equality-based requirements into the framework 

that calculates solution spaces. First, a relaxed problem statement is presented that can be solved 

by existing algorithms to maximize solution boxes. Furthermore, design variables are split into 

two groups: early-decision variables that are subject to large uncertainty and late-decision 

variables that are controllable and adjustable in a later stage of the development process. An 

existing projection technique and a novel approach that both project solution spaces to increase 

permissible intervals for early-decision variables are introduced. The relaxed problem statement 

and an inversion-based projection technique are applied to the design of a tailgate system of a 

passenger car, where the chassis and tailgate are designed in a distributed development process. 

It is shown that the resulting permissible intervals on the component level are significantly 

wider when projecting the solution space onto a subset of design variables than by solving the 

relaxed problem statement without applying a projection operator.  

 

Keywords: computational design methods, solution space, uncertainty, robust design, early 

design phase 



1 Introduction 

Complex systems development is subject to uncertainties. With an increasing number of 

functional interrelationships between design variables and requirements to be met, complexity 

grows and the entire system becomes uncertain during the development process (Suh, 2005). 

In order to minimize the number of iterations in the development process and to deal with 

uncertainties, set-based design approaches, in which permissible intervals are sought for each 

design variable, have a large potential in comparison to classic point-based design methods, 

which look for one optimal value for each design variable (Qureshi et al., 2014). Usually set-

based design approaches pursue the aim of finding large sets of good solutions in a given design 

space. Therefore, it is necessary to explore the design space in an efficient way. In the 

development of software architecture, this is a well-known procedure prior to the 

implementation to find design alternatives that satisfy all global constraints (Palesi and 

Givargis, 2002 and Kang et al., 2011).  

 

For design space exploration in an early stage of product development under uncertainties 

Yannou & Harmel (2004) present a Constraint Programming (CP) method, in which a design 

space, described by several multi-dimensional boxes is calculated. These boxes enclose a set of 

good designs that fulfill every requirement on the system but contain bad designs as well. 

Therefore, a further step to calculate a solution is needed and design variables are not 

decoupled. Decoupling means that each design variable is assigned a valid solution interval in 

which its value can be modified independently of all other design variables.  

 

Further research on Generative Design Approach (GDA) is presented in Li and Lachmayer 

(2019). The idea of this method is to transform the given design problem into a configuration 

problem. In an iterative process, the design space can be efficiently explored by configuring 

variable design elements. Thus, GDA helps the designer to find larger regions of feasible 

designs, compared to conventional modelling methods. However, GDA is only applied on 

designing single parts and does not consider complexity in the system development processes. 

Abi Akle et al. (2017) focus on the visualization of the design space and compare different 

possibilities of representing systems behavior. To get a deeper understanding, of how 

requirements on a system and solution spaces can be related, Salado et al. (2017) present a 

comprehensive summery of dependencies and mathematical formulations. 

 

In this paper, the focus stays on the so-called Solution Space Engineering, a set-based design 

method, proposed by Zimmermann and Von Hössle (2013), in which a set of good designs that 

meet all considered requirements is defined as a solution space. The aim of this method is to 

find one large multi-dimensional box-shaped solution space in order to achieve a decoupling of 

the design variables and thus maximum flexibility in design. A box-shaped solution space can 

be represented as the product of permissible intervals. Each interval may be treated as a 

component design goal and since the intervals are independent, this is a huge advantage in a 

distributed component design (Zimmermann and Von Hössle, 2013). Unfortunately, complete 

decoupling of design variables is in conflict with design feasibility, because the permissible 

intervals are often not sufficiently large. The following three approaches to increase the 

resulting permissible intervals are found in literature.  

 

Erschen et al. (2017) propose an approach that optimizes a set of permissible two-dimensional 

regions (2D-spaces) for pairs of design variables, represented by polygons. The complete 

solution space is the Cartesian product of all 2D-spaces. Another approach, in which design 

variables are pair-wisely coupled to increase a box-shaped solution space, is presented by 



Harbrecht et al. (2019). Vogt et al. (2018a) propose a method, where design variables are split 

into two groups in order to reduce the dimensions of the overlaying optimization problem and 

calculate solution-compensation spaces: early-decision variables have a strong influence on the 

systems performance and need to be associated with permissible intervals on which they may 

assume any value; whereas late-decision variables can be adjusted in a later stage of the 

development process and thus they are associated with intervals on which they have to be able 

to assume any value. Consequently, this leads to larger permissible intervals for early-decision 

variables due to additional conditions for late-decision variables (Vogt et al., 2018a). 

 

However, none of the mentioned approaches offers the treatment of design problems with 

equality constraints. Nevertheless, the design of mechanical systems often deals with 

geometrical and functional requirements simultaneously. Strong geometrical requirements, e.g. 

a mechanism that must reach a given coordinate point on its movement, often lead to equality 

constraints in a mathematical form. This study aims to extend the classical problem formulation 

of Solution Space Engineering in order to consider equality constraints. Furthermore, it 

discusses different opportunities to solve this extended problem. 

 

2 Solution Spaces 

To describe the behavior of the considered system, the performance function 𝑓: ℝ𝑛 → ℝ𝑚 is 

defined as 

𝑧 =  𝑓(𝑥),  (2.1) 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] ∈ Ωds is a single design point and 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑚] ∈ ℝm the 

response of the system behavior. Ωds ⊂ ℝ𝑛 is called design space.  

 

Conventional optimization problems have a formulation that the performance function 𝑓, or at 

least a subset of it, is defined as objective function. Marler and Arora (2004) show a 

comprehensive collection of approaches to find solutions of such multi-objective optimization 

problems. In an early stage of the development process, however, the definition of a set of 

interdisciplinary objectives may be very subjective, which is why an exploration of a solution 

space, containing only feasible design points, may be preferred according to Yannou et al. 

(2009). Therefore, several methods exist to deduce an optimization problem by defining the 

performance of a system as constraints only, in order to maximize the robustness of a design. 

Hendrix et al. (1996) defines a couple of robustness measurements and presents an optimization 

formulation and the solution of this problem statement for linear constraints. Nevertheless, 

Hendrix´ formulation is point-based and the decoupling of variables is not guaranteed. In the 

following, the optimization problem referring to Solution Space Engineering is introduced in 

detail. In this approach, the performance function 𝑓 is defined as constraints and the aim is to 

maximize the box-shaped solution space. 

 

The requirements on the system are defined as inequality constraints 

𝑓(𝑥) ≤ 𝑓c,  (2.2) 

with 𝑓c ∈ ℝ𝑚 as the given threshold values. A design point 𝑥 is called a good design, if the 

constraints (2.2) are fulfilled. Zimmermann and Von Hössle (2013) define the complete solution 

space as the set of all good designs. To decouple the design variables, a box-shaped solution 

space (solution box) is defined as  

Ω = 𝐼1 × 𝐼2 ×  … × 𝐼𝑛 ⊂ Ωds,  (2.3) 



where 𝐼𝑖 = [𝑥𝑖
l, 𝑥𝑖

u] is a permissible interval of the 𝑖-th design variable with the lower and the 

upper boundary 𝑥𝑖
l and 𝑥𝑖

u respectively.  

Figure 1 shows an example design space with two design variables 𝑥𝑖 and 𝑥𝑗 and three 

requirements. The complete solution space is colored green. Designs in the yellow, red and blue 

areas do not fulfill the requirements. As a subset of the complete solution space, a solution box 

is drawn in dark green. 

 

Figure 1:  Design space, solution space and solution box  

To maximize the size 𝜇(Ω) ∈ ℝ of the solution box Ω, Zimmermann and Von Hössle (2013) 

define the optimization problem  

max
Ω⊂Ωds

𝜇(Ω)  (2.4) 

𝑠. 𝑡.    ∀𝑥 ∈ Ω,        𝑓(𝑥) ≤ 𝑓c. 

As a possible size measure 𝜇(Ω) of the solution box Ω, Zimmermann and Von Hössle (2013) 

propose the volume  

𝜇(Ω) =  ∏ (𝑥𝑖
u −  𝑥𝑖

l𝑛
𝑖=1 ). (2.5) 

 

3 Problem Formulation 

In the previous paragraph, the Solution Space Engineering approach was presented in detail. 

This section demonstrates a simple example problem, where this approach cannot be applied, 

because the shape of the complete solution space does not allow a maximization of the solution 

box. Subsequently, the resulting general problem statement is defined. 

3.1 Simple Example Problem 

Figure 2a shows a mechanism with one degree of freedom. In 𝐴, a rigid body is mounted 

pivotably. It can be turned about the angle 𝜑. Between 𝐵 and 𝐶 a gas spring is attached in order 

to ensure that the rigid body stays safe in both positions, closed and open. The maximum angle 

𝜑max depends on the distance Δ𝑥 between 𝐴 and 𝐵 as well as the length 𝑙 of the gas spring 

when completely extended. 



              

Figure 2:  Simple example problem with two design variables: a) Mechanism resembling a vehicle tailgate 

b) Complete solution space c) Projected solution space 

The requirements of the system are to fulfil an equality restriction on 𝜑max and a set of 

inequality constraints in order to ensure that the resulting forces are within a permissible range. 

The solution space of this design problem is a thin and curved line with the volume equal to 

zero, shown in Figure 2b. How can an efficient projection of this solution space onto a subset 

of design variables, as depicted in Figure 2c, be achieved? To discuss this question, a general 

problem statement is pointed out in the following. 

3.2 General Problem Statement 

In order to take equality constraints into account, the optimization problem (2.4) is extended 

and becomes  

max
Ω⊂Ωds

𝜇(Ω)  (3.1) 

𝑠. 𝑡.    ∀𝑥 ∈ Ω,        𝑓(𝑥)  ≤  𝑓c,        ℎ(𝑥)  =  ℎ0,  

with the threshold values 𝑓c ∈ ℝ𝑚 and the nominal values ℎ0 ∈ ℝ𝑠. The performance functions 

are defined as 𝑓: ℝ𝑛 → ℝ𝑚 and ℎ: ℝ𝑛 → ℝ𝑠 subject to inequality and equality constraints 

respectively. This problem formulation leads to a solution space, whose volume is equal to zero, 

if at least one equality constraint (depending on all design variables) is defined (see example in 

Figure 2b). In this case, the optimization problem is not well defined, because the size of the 

maximum solution box is equal to zero at any point of the solution space. To resolve this 

problem, different formulations are discussed in the following. 

 

4 Solution Approaches  

Conventional algorithms of Solution Space Engineering are based on Monte Carlo sampling 

techniques (Zimmermann et al., 2017). These methods fail when solving the optimization 

problem (3.1), because the volume of the solution space is equal to zero and a good design point 

will not be found by random sampling. 



4.1 Relaxed Problem Statement 

One possible modification to achieve a feasible form of the optimization problem (3.1) is to 

define a small permissible range 𝜅 ∈ ℝ+
𝑠  around the nominal values ℎ0 of the equality 

constraints, so that the relaxed constraints of the system reads  

𝑓(𝑥)  =  (

𝑓(𝑥)

ℎ(𝑥)

−ℎ(𝑥)
)  ≤  (

𝑓c

ℎ0 + 𝜅
−ℎ0 + 𝜅

)  =  𝑓c, (4.1) 

with the performance function 𝑓: ℝ𝑛 → ℝ𝑚+2𝑠 and the relaxed threshold values 𝑓c ∈ ℝ𝑚+2𝑠. 

Sampling-based Solution Space Engineering algorithms can achieve the maximization of the 

solution box according to the optimization problem (2.4) with the constraints defined in 

equation (4.1). However, the resulting solution space is not well suited to decouple the design 

variables, because it is still thin and thus the maximum solution box is often too small.  

4.2 Solution-Compensation Spaces 

To increase the solution intervals for crucial design variables of the relaxed problem statement 

Vogt et al. (2018a) define an optimization problem to compute so-called solution-compensation 

spaces as 

max
Ω𝑎⊂Ωds,𝑎 

𝜇(Ω𝑎)  (4.2) 

𝑠. 𝑡.    ∀𝑥𝑎 ∈ Ω𝑎,        ∃𝑥𝑏 ∈ Ωds,𝑏 ,        𝑓(𝑥𝑎, 𝑥𝑏) ≤ 𝑓c, 

where a design point 𝑥 = [𝑥𝑎, 𝑥𝑏] is represented by early- and late-decision variables 𝑥𝑎 ∈
Ωds,𝑎 ⊂ ℝ𝑝 and 𝑥𝑏 ∈ Ωds,𝑏 ⊂ ℝ𝑞 respectively. Early-decision variables are design variables 

that are subject to large uncertainty. They need to be associated with large permissible intervals 

on which they may assume any value in order to increase flexibility for component design. In 

contrast, late-decision variables are design variables that are adjustable in a later stage of the 

development process. The solution of the optimization problem (4.2) leads to a projection of 

the complete solution space onto the early-decision variables with larger permissible ranges. 

Solution-compensation spaces are the Cartesian product of early-decision variables and late-

decision variables (Vogt et al., 2018a). 

 

To solve the optimization problem (4.2), sampling-based algorithms to maximize solution 

boxes can be used, whereby each evaluation of a sample point 𝑥𝑎 requires solving a further 

optimization problem that reads 

𝑧opt =  min
𝑥𝑏∈Ωds,𝑏

𝑓(𝑥𝑎, 𝑥𝑏). (4.3) 

Thus, the number of performance function evaluations increases significantly and calculation 

costs are often not reasonable. An efficient algorithm to calculate solution-compensation spaces 

for linear problems is presented by Vogt et al. (2018b). However, the development of efficient 

methods to compute solution-compensation spaces for general problems is part of future 

research. 

4.3 Equality Constrained Projection 

The relaxed problem statement does not ensure that a design meets the equality constraints 

exactly. This paper presents a formulation, in which a direct projection of the solution space 

onto the early-decision variables using the equality constraints is achieved. Therefore, the 



optimization problem (4.2) to calculate solution-compensation spaces is extended to consider 

equality constraints and becomes 

max
Ω𝑎⊂Ωds,𝑎 

𝜇(Ω𝑎)  (4.4) 

𝑠. 𝑡.    ∀𝑥𝑎 ∈ Ω𝑎,        ∃𝑥𝑏 ∈ Ωds,𝑏 ,        𝑓(𝑥𝑎, 𝑥𝑏) ≤ 𝑓c,        ℎ(𝑥𝑎, 𝑥𝑏) = ℎ0. 

The solution of the optimization problem (4.4) can be found by a sampling-based algorithm to 

maximize solution boxes. When evaluating a sample point 𝑥𝑎, the following steps must be 

taken: 

 

1) Find 𝑥𝑏 ∈ Ωds,𝑏, so that the equality constraints 

ℎ(𝑥𝑎, 𝑥𝑏) = ℎ0 (4.5) 

are fulfilled. 

2) Evaluate the inequality performance function: 

𝑧 =  𝑓(𝑥𝑎, 𝑥𝑏).  (4.6) 

3) Check if the inequality constraints are fulfilled: 

if  z ≤ 𝑓c   ⟹ 𝑥𝑎 ∈ good designs. (4.7) 

 

To clarify the idea of the approach described by the equations (4.5)-(4.7), Figure 3 illustrates 

the evaluation of a sample point with and without projection in the form of a dependency graph, 

with 𝑧 and 𝑧eq as the responses of the performance functions 𝑓(𝑥) and ℎ(𝑥) respectively.  
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Figure 3:  Evaluation of a sample point: a) Conventional Solution Space Engineering formulation b) 

Formulation with early- and late-decision variables as well as inequality and equality constraints 

c) Equality constrained projection 

The conventional formulation (Figure 3a) refers to the optimization problem (2.4), where a 

single set of inequality constraints is given. The differentiation between early- and late-decision 

variables as well as equality and inequality constraints are shown in Figure 3b. This formulation 

relates to the constraints of the optimization problem (4.4). The calculation of the projected 

solution space by the equality constraints (including the nominal values ℎ0) is shown in Figure 

3c. The corresponding calculation procedure is characterized by the equations (4.5)-(4.7). 

The projection of the complete solution space by the equality constraints onto early-design 

variables requires the solution of the system of nonlinear equations (4.5) for every evaluation 

of a sample point 𝑥𝑎. In comparison to the calculation of solution-compensation spaces (solving 

optimization problem (4.3)), this might be numerically less expensive, because the number of 

equations is less. However, there are several prerequisites on equation (4.5) to ensure a 



numerically stable solution. Additionally, the numerical effort is difficult to estimate and might 

be too expensive considering that this system has to be solved for each sample point evaluation. 

Therefore, the definition of efficient methods and algorithms is part of future research. 

However, in certain cases it is possible to build the inverse of the performance function referring 

to the equality constraints, which is defined as 

𝑥𝑏 = 𝑔(𝑥𝑎, ℎ0).  (4.8) 

In this case, the first step of the presented approach above (equation (4.5)) is numerically 

inexpensive and easy to calculate.  

 

5 Application to the Design of a Tailgate System 

In order to compare the methods presented, the design of a tailgate system of a passenger car is 

considered in the following.  

5.1 Problem Description  

In Figure 4 the tailgate system is shown in closed position. Part of the design problem is the 

chassis in grey, the trunk lid in yellow and the gas spring (gs) in blue color. The attachment 

points of the gas spring are colored red. The design of the chassis and the tailgate takes place 

in the early phase of vehicle development. Therefore, it is necessary to know the permissible 

area for the attachment points of the gas spring. The example shows how these permissible 

ranges for the attachment points can be calculated, to ensure that all requirements on the tailgate 

system level are met. 

 

Figure 4:  Tailgate system of a passenger car 

The dependency graph of the tailgate system is shown in figure 5. The critical design variables 

are the coordinates in vehicle 𝑥 and 𝑧 direction of the attachment points of the gas spring on the 

chassis and on the tailgate. Those variables have a strong influence onto the functional 

requirements of the trunk lid, e.g. the holding forces and the closing behavior of the tailgate 

system and depend on the component design of the chassis and the tailgate.  

 

Since the design of the components takes place in a distributed development environment it is 

a huge advantage to get the largest permissible intervals (solution box) for the critical design 

variables, which fulfill all functional requirements, to increase the flexibility of the component 

design for the chassis and the tailgate. For this reason, the attachment points are allocated to the 



early-decision variables. The parameters of the gas spring are the nominal force 𝐹n,gs and the 

length 𝑙max,gs (length when gas spring is fully extended). These design variables are not very 

critical, because their value can be chosen in a later stage of the development process. Thus, it 

is not necessary to maximize the solution box in these dimensions and they are assigned to the 

late-decision variables. 

 

Figure 5:  Dependency graph of the tailgate system with the system performance on top and the design 

variables at the bottom  

Since the given design problem involves the equality constraint on the tailgate angle 𝜑max in 

open position, it is not possible to solve it with the conventional Solution Space Engineering 

approach. Therefore, we derive and solve the relaxed problem statement as presented in section 

4.1 and apply the projection by the equality constraint, introduced in section 4.3. The model to 

evaluate the performance functions is implemented as a multi-body simulation. 

5.2 Results of the Relaxed Problem Statement 

Figure 6 shows the results, calculated by solving the optimization problem (2.4) with the relaxed 

constrains (4.1). The relaxation constant is chosen to 𝜅 = 1° for the tailgate angle 𝜑max in open 

position. The green area is the complete solution space. The other colors indicate the 

constraints, relating to the colors of the system performance in the dependency graph (Figure 

5). As a result, the complete solution space of this problem is a thin layer and the size of the 

maximum solution box to decouple the design variables is not sufficiently large for the 

distributed development process of the chassis and the tailgate. 

      

Figure 6:  Solution space and solution box of the relaxed problem statement (colors of requirements refer to 

Figure 5) 



5.3 Results with Equality Constrained Projection 

The results depicted in Figure 7 are the solution of the optimization problem (4.4). As well as 

in Figure 6, the green area is the complete solution space and the colors of the constraints are 

related to the system performance, shown in the dependency graph (Figure 5). Although the 

equality constraint subject to 𝜑max (grey) is used as the projection operator, there are areas 

where this requirement is not fulfilled (see Figure 7). This happens, when the projection leads 

to an invalid value of the late-decision variable 𝑙max,gs. 

 

Figure 7:  Solution space and solution box with projected equality constraint 𝝋𝐦𝐚𝐱 (colors of requirements 

refer to Figure 5) 

The projection by the equality constraint 𝜑max is inversion-based and thus easy and fast to 

calculate. The design space is reduced by the late-decision variable length of the gas spring 

𝑙max,gs. This leads to a significant wider solution space and solution box with enough flexibility 

for the component development.  

5.4 Comparison of the Solution Boxes 

In Table 1, the calculated solution boxes respectively the widths of the permissible intervals of 

each design variable are shown. When projecting the solution space by the equality constraint, 

the widths of the intervals are up to seven times of the solution without projection. 

 
Table 1: Width of the permissible intervals of the design variables 

design variable unit solution intervals of 

relaxed problem 

statement 

solution intervals with 

equality constrained 

projection 

attachment point gs-tailgate x mm 2 15 

attachment point gs-tailgate z mm 2 12 

attachment point gs-chassis x mm 2 10 

attachment point gs-chassis z mm 2 10 

nominal force of gs N 20 20 

length of gs mm 1 - 

 

6 Conclusion 

This paper shows two extensions of the Solution Space Engineering approach, which was 

introduced by Zimmermann and Von Hössle (2013), to enable the integration of equality 

constraints. First, a relaxed problem statement was presented, where a relaxation constant is 

defined and each equality constraint is replaced by two inequality constraints. The resulting 



solution space is very thin and the maximum solution box is often not sufficiently large. One 

possibility to obtain a wider solution box is the projection of the complete solution space onto 

a subset of design variables, called early-decision variables, by computing solution-

compensation spaces. Since this is numerically expensive, the idea of the second approach is to 

project the solution space by the equality constraints onto the early-decision variables. In certain 

cases it is possible to define this projection inversion-based in a closed form, thus it is 

numerically favorable. 

 

Both approaches were applied on the design of a tailgate system with six design variables, four 

inequality-based requirements and one equality-based requirement on the system level. The 

results of this example show that the first approach, without any projection, leads to very small 

solution boxes. Additionally, since there is a relaxation constant defined, the equality-based 

requirement is never exactly fulfilled. The projection of the solution space by the equality 

constraint leads to much larger permissible intervals for the early-decision variables. In the 

distributed development process of the chassis and the tailgate, this leads to more flexibility in 

component design and less communication effort.  

 

In this case, the projection was performed by an inversion-based closed equation, which is easy 

to evaluate. Unfortunately, it is not possible to define such a numerically inexpensive projection 

in general. Therefore, future work will focus on the development of efficient formulations to 

project a solution space with equality-based requirements onto early-design variables. 
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