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Abstract: By creating a frame structure of a new layout and dividing it into modules
with little coupling to each other, as well as using topology optimization and
clustering, we have determined the assembly units of the product and the assembly
process with least rework. Replacing materials with lightweight alternatives is an
effective method for reducing the weight of structures. However, because adhesion
and coefficients of thermal expansion are different for each material, it seems
reasonable to replace modules represented as a functional unit. Therefore, we
constructed a system for structural evaluation and material replacement with cross
section that maintains equivalent stiffness for each module. We present the method
of constructing the system and the effectiveness of using machine learning;
confirmed by applying it to a box structure.
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1 Introduction

To create new added value while improving manufacturing productivity in small quantities,
it is suggested to make product variants using modules (Sebastian, 2015). We consider that
it is effective to decompose a structure into modules as functional units for a wide variety
of products, and to increase production efficiency by using modular assembly units.
Additionally, weight reduction of structures is also important for reducing the
environmental load of production. In weight reduction of mobility technologies, it is
effective to replace different materials with well-designed modular lightweight
alternatives. Design Structure Matrix (DSM) (Eppinger and Browning, 2012) analysis is
considered an effective method for extracting module candidates. As an application of
DSM to vehicles (Pandremenos and Chryssolouris, 2011), the relationship between 38
pressed parts of a vehicle body is described as a DSM, and 5 module decomposition
candidates (of the front, floor and rear structures, as well as, lower and upper frames of a
passenger compartment) are obtained by sorting the DSM using a self-organizing neural
network method. In another study (Linden and Sellgren, 2016), the relationship between
people and parts including the operation of a truck cab and bodily sensations, are described
in the DSM. Technical problems are reduced by analyzing relations such as between
customer demands and vibration transmission. In the application of these DSMs to
vehicles, it is assumed that the components have functions and areas defined in advance,
such as the geometric and force relationships (and requirements) between pressed parts.
Furthermore, product part sizes are influenced by manufacturing methods and constraints
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(Boothroyd et al., 2010) (Lyu, et al., 2005). In other words, even if we modularize a
conventional structure using DSM analysis, module candidates depend on part dimensions
influenced and constrained by manufacturing processes. Therefore, we think that it is
necessary to target an ideal new layout structure with no conventional manufacturing
constraints during the conceptual design stage. For this reason, topology optimization
(Bendsee and Kikuchi, 1988; and Sigmund, 2003) which can calculate ideal new layout
structures was implemented here. In previous study (Nishigaki and Asaga, 2017), we
proposed a modularization method that utilized topology optimization for an ideal new
layout structure, with DSM clustering and no conventional manufacturing constraints, to
derive module candidates (see Figure 1). To obtain clear part dimensions, we adopt
topology optimization using beam elements rather than solid elements; to not derive
unclear boundaries. In the DSM analysis, we express the connection and physical
characteristics of each beam element as a DSM. Using the dendrogram obtained after
hierarchical clustering on the DSM, we determined the modular units and the assembly
order of the product with least rework. Here, we calculated all the combinations of steel-
to-aluminum replacement on a modular unit, and examined the changes systematically with
structural evaluations to extract an efficient substitution pattern for a lightweight structure.
Because the cross-sectional size obtained by topology optimization is important physically
in the structure, we add the polar moment of area to the DSM as a weight. Additionally, in
hierarchical cluster analysis, we used cosine similarity (Wierzchon and Klopotek, 2018)
representing the closeness of the directions of the two vectors as an index of similarity
between clusters; not Euclidean distance. Finally, after machine learning with a neural
network using all these combination results, we show that it is possible to derive the
material combinations for a lightweight structure with modular units that achieve specified
performances.

*) part size depends on manufacturing constraints
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Figure 1. Concept image of modularization method
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2 Methodology

In the conceptual design stage, to easily estimate the mechanical performances of the multi-
material lightweight structure after material replacement, we have constructed a method
that consists of four major steps.

(1) Topology optimization: Create an ideal new layout consisting of beam structure
elements for the frame structure (called the ground structure), that maximizes stiffness with
a total volume constraint.

(2) Modularization: Express the connection and member characteristics of each beam
element as a DSM. Apply hierarchical clustering (Nielsen, 2016) to the DSM, extract
candidate modules with the smallest coupling to others and express the assembly order of
the product with least rework using a dendrogram. Here, the process images of step 1 and
2 is shown in Figure 2.

(3) Material replacement and characteristic analysis: Calculate the cross sectional
characteristics with equivalent stiffness on a modular unit of each material replacement.
Then, perform characteristic analysis (mass, height of the center of gravity and Ist
eigenvalue) of the entire structure for all material combinations.

(4) Machine learning and prediction: Train the neural network with these results and predict
the combination of material replacement on modular units satisfying the specified
performances. Perform characteristic analysis with the predicted material combination to

confirm performance achievement.
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Figure 2. Process image of (1) topology optimization and (2) DSM analysis

2.1 Topology optimization

We apply topology optimization to create an ideal new layout of a frame structure
consisting of many beam elements (Nishigaki et al., 2000). As a methodology to maximize
the stiffness of the structure with a total volume constraint, we apply (a) a ground structure
approach and (b) minimization of mean compliance (equivalent to stiffness maximization).
To solve multi-loading conditions, we use the min-max approach which considers the
loading condition that receives the maximum damage (mean compliance) at each iteration
step. In the ground structure approach (see left of Figure 2), fixed nodes are preset, and
beam elements are connected for all combinations between the box nodes. The design
variable is the diameter of the hollow cylinder section, and the thickness is defined as the
diameter multiplied by constant number. Then, the design variables are updated in
proportion to the mean compliance as sensitivity. Resultantly, necessary elements become
thicker and unnecessary ones become thinner.
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2.2 Modularization method

A DSM is constructed from the frame structure after topology optimization and module
candidates are extracted by hierarchical clustering on the DSM (see center of Figure 2).
Here, the beam elements of the frame layout obtained by topology optimization are
regarded as parts, and the dependency between the beam elements is expressed by the
DSM. However, if the DSM is composed of only connections between the parts,
boundaries between module candidates can be physically weak. Therefore, considering that
the cross-sectional size of the frame obtained by topology optimization is of high physical
importance, the polar moment of area is thus added to the DSM as a weight. For example,
in the case of a circular structure using the DSM composed of only connections between
the parts, boundaries of module candidates equally exist on the arc. Thus, we cannot
determine the unique module boundaries. Generally, we design physically important parts
to be thicker in mechanical design. For this reason, we have introduced DSM analysis
considering the polar moment of area with physical importance. In hierarchical cluster
analysis, cosine similarity representing the closeness of the directions of the two vectors,
is used a similarity index between clusters; not Euclidean distance representing the length
of a line segment connecting two vectors. By using cosine similarity, it is possible to
perform modularization taking into consideration the closeness and angles between parts.
In other words, by focusing on the component ratio of the DSM element vector, similarity
is evaluated by the physical importance of each element in connection with the overall
structure. The group average method (Wierzcho n and Klopotek, 2018) is used as a method
of defining the distance between clusters to be merged. By showing the connection
relationship of clusters in a diagram called dendrogram, we can determine the modular
units and the assembly order of the product with least rework (see right of Figure 2).

2.3 Material replacement and characteristic analysis

Replacing heavier material with a lightweight alternative is an effective method for
reducing the weight of structures, but in order to minimize influences such as adhesiveness
and differences in coefficients of thermal expansion due to the use of different materials,
it seems reasonable to replace modules as functional units. Additionally, stiffness can
decrease when replacing heavier materials with more lightweight alternatives. Therefore,
we constructed a system for structural evaluation by replacing the characteristics of the
material and the cross section with one that maintains equivalent stiffness for each module.
Characteristic analysis (mass, height of the center of gravity and 1st eigenvalue) was then
performed for all material combinations. In strength of materials, beam deflection is
inversely proportional to EI, where, E is the Young's modulus and I is the second moment
of area. In the case of a cantilever beam of length L, the deflection & when a load P is
applied to the end point is given by 8 = PL? / (3 EI). Therefore, if the index representing
the state before material replacement is defined as “1”, and the index representing the state
after material replacement is “2”, the following stiffness equation (1) should be satisfied to
have the same stiffness. Here, topology optimization was performed on steel, and the
lightweight material selected was aluminum. Here, the index 1 represents steel as the state
before material replacement. The index 2 represents aluminum as the state after material
replacement. In this topology optimization based on ground structure approach, the radius
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r of the cylindrical cross section is used as a design variable, and the thickness t is a factor
B times the radius r (see Figure 3). The second moment of area I of the thin cylindrical
section is expressed by the following equation (2). Therefore, the radius r; of equivalent
stiffness after replacement with a lightweight material is expressed by the following
equation (3).

E/li=E D (1)

L= (4)(r - (r-pr)*) = (4)(1 - (1 -B) r* (2)
szr](E]/Ez) (1/4) (3)

<> E,I,=E,I, ‘
t=pr

(BI: factor)
1. steel 2. aluminium
Figure 3. Design variables of cylindrical cross section with equivalent stiffness

2.4 Machine learning and prediction

The neural network is trained using the results of the characteristic analysis (mass, height
of the center of gravity and 1st eigenvalue) of all combinations of material replacement
based on equivalent stiffness on the modular unit. The number of learning times is set to
10,000. The output values are a combination of material selection for each module. Using
machine learning through the neural network, we can derive the combinations of material
replacement on a modular unit satisfying the specified performances (mass, height of the
center of gravity and 1st eigenvalue) (see Figure 4).

(1) Learning of
neural network

(2) Enter three :
H « | Material type for
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(3) Predicted = 51|.2|Q modulesC
value of material & §‘ .£|@ modulesD
replacement = o E > 1. steel
> 2. aluminium
(4) Result of mass
verification height of
analysis center of gravity

1st eigenvalue
Figure 4. Machine learning and prediction system using multilayered neural network
We use multi-layer neural networks classified as mapping networks (the 4 layers consist
of 3 neurons in the input layer, 9 neurons in the hidden layers and 4 neurons in the output
layer) and backpropagation law (LeCun et al., 1998) based on minimizing the differences
in the final output of the network.
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3 Application of multi-material lightweight structures

3.1 Results of topology optimization

We apply our methodology to a simple box structure and confirm its effectiveness. The
ground structure consists of beam elements in the designable space and five load conditions
are defined (see Figure 5). In this case, only rectangular elements are generated without
diagonal elements in consideration of ease of manufacturing. Here, the maximum diameter
of the beam element is set to 150 [mm], the volume constraint is set to 20% (final volume
/ volume when all beam elements have the maximum diameter), and the plate thickness t
is set to 0.02 times the beam element radius. As a result of topology optimization (see
Figure 6), it can be confirmed that the elements not contributing to the load path are
eliminated or become thinner, and those contributing to the load path become thicker
relatively, depending on the physical importance.
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Figure 5. Ground structure and load conditions Flgure 6. Result of topology optimization

3.2 Results of modularization

The beam clements forming the frame layout (see Figure 6) obtained by topology
optimization are regarded as parts, and the dependency between the beam elements are
expressed by the DSM (see left of Figure 7).
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Figure 7. Design structure matrix (left: before clustering, right: after clustering)

Additionally, considering that the cross-sectional size of the frame is of high physical
importance in the structure, we added the polar moment of area as a weight to the DSM.
By hierarchical clustering, large and small square blocks were extracted as module
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candidates with the smallest coupling to others (see right of Figure 7). Furthermore, the
dendrogram shown in Figure 8 is obtained by hierarchical clustering. Then, the process of
merging small triangles to form a large triangle can be considered as an efficient assembly
order with least rework. Here, we defined four modules (A to D), as illustrated in Figure 8.

Figure 8. Dendrogram obtained by clustering

3.3 Results of material replacement and characteristic analysis

We show all the material combinations on a modular unit (see Figure 9) and the results of
the characteristic analysis (see left of Figure 11) of all 16 cases of material replacement
from steel to aluminum.
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Figure 9. All combinations of replacing steel with lightweight aluminum

The height of the center of gravity changes significantly due to replacement of steel with
lightweight materials (the height of the center of gravity is an important index for the
stability of moving structures). 1st eigenvalues will be increased by decreasing the mass
due to the lightweight alternatives with equivalent overall stiffness (see equation 3).
Because of the material replacement on a modular unit, eigenmodes and antinodes of
vibration may change (see Figure 10). Here, a maximum displacement error of 10.8%
occurs on the basis of the displacement of case 1 using all steel. In this study, we proposed
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a method to realize equivalent stiffness by scaling the diameter (see equation 3) based on
simple beam theory; assuming elasticity. However, as force and moments act on beam
elements in complex structures, we found that it is necessary to extend the analysis to
complex states, or to scale with a correction factor. However, as the purpose of this study
is to extract the replacement regions and confirm their effectiveness in weight reduction
and property improvements and displacement errors are relatively small, the issue
regarding  displacement  errors 1s a  subject for  future  research.

material
combination

material
combination

1st eigenmode
(32 Hz)

case 5 case 10
Figure 10. Examples of eigenmode of case 5 and case 10 combinations

3.4 Results of machine learning and prediction

We trained the neural network using all the results from the characteristic analysis and the
material combinations (see Figure 11). Here, the 1st, 2nd and 3rd eigenvalues are important
indices for the stability of a moving structure (see Figure 10). As one of the solution to
handling multiple eigenvalues, we consider that additional neuron layers will be needed,
like in deep learning. However, here we deal with only the 1st eigenvalue as an input value
to the neural network for confirmations of the methodology. The handling of multiple
eigenvalues in training a neural network will be the theme in future research. Resultantly,
we have confirmed that the maximum error was as small as 0.028 and the model learned
sufficiently well. Using this learned neural network, we have derived the combinations of
material replacement on a modular unit realizing the specified values (the mass is reduced
by 20% to 111.8 [kg], the height of the center of gravity is reduced by 40 mm to 30.5 [cm]
and the 1st eigenvalue is increased by 3 Hz to 29.6 Hz) with respect to the result of case 1
in the initial state (steel only). Resultantly, module A is 1.0, module B is 1.6, module C is
1.0 and module D is 2.0 were obtained from the neural network. It was shown that module
A and C should be steel, module D should be aluminum and module B should be mixed
material (ratio 1.6) of steel and aluminum. One proposal for realizing this mixed material

118 DSM 2019



Y. Asaga, H. Nishigaki

state is to divide module B into smaller modular units (obtained by the above-described
clustering) and to select a material for each of these units. The mixed material properties
in verification analysis corresponding to 1.6 are determined by equations (4) and (5). Here,
we defined the indices so that 1 is steel, 2 is aluminum, E is Young's modulus and p is
density. As the characteristic analysis using this material composition has errors within
3.7%, we confirmed the effectiveness of our method. Finally, as we deal with steel and
aluminum as a design variable like the binarization problem in this paper, there is an
uncertainty problem. We consider that it will be effective to use logical approach or
probability distribution from probability theory, as a design variable in the next step.
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Figure 11. Training of neural network using results of characteristic analysis and the material
combinations

E(1.6)=E;+(E:—E;)(16-1) (4)
p(1.6) =pr+(p2—p1)(1.6-1) (5)

4 Conclusion

Here, we propose a modularization method that utilizes topology optimization and
clustering to derive module candidates and efficient assembly order, for an ideal new layout
structure having no conventional manufacturing constraints. Here, we design a cross
section with equivalent stiffness upon material replacement (steel-to-aluminum) to reduce
the weight of the structure without reducing stiffness. Then, after machine learning with
neural network using all the material combinations and their respective performances
(mass, height of the center of gravity and 1st eigenvalue), we show that it is possible to
derive combinations of replacement material on a modular unit that can achieve the
specified performances.
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