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Abstract 
Additive manufacturing allows us to build almost anything; traditional CAD however restricts us 

to known geometries and encourages the re-usage of previously designed objects, resulting in 

robust but nowhere near optimum designs. Generative design and topology optimization promise 

to close this chasm by introducing evolutionary algorithms and optimization on various target 

dimensions. The design is optimized using either 'gradient-based' programming techniques, for 

example the optimality criteria algorithm and the method of moving asymptotes, or 'non gradient-

based' such as genetic algorithms SIMP and BESO. Topology optimization contributes in solving 

the basic engineering problem by finding the limited used material. The common bottlenecks of 

this technology, address different aspects of the structural design problem. 

  This paper gives an overview over the current principles and approaches of topology 

optimization. We argue that the identification of the evolutionary probing of the design boundaries 

is the key missing element of current technologies. Additionally, we discuss the key limitation, i.e. 

its sensitivity to the spatial placement of the involved components and the configuration of their 

supporting structure. A case study of a ski binding, is presented in order to support the theory and 

tie the academic text to a realistic application of topology optimization.  
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1. Introduction 
The ideal linkage between the additive manufacturing (AM) and the structural optimization (SO) 

is the key element in product development these days. On the one hand, models are produced by 

the addition of thousands of layers with the use of additive manufacturing (AM). That offers to 

designers a huge geometrical flexibility, with no additional cost, compared to traditional 

manufacturing. AM encompasses many technologies such as 3D printing, rapid prototyping and 

direct digital manufacturing (DDM). On the other hand, structural optimization reduces the 

material usage, shortens the design cycle and enhances the product quality. SO can be implemented 

according to size, shape, and topology (see Figure 1). Topology optimization is usually referred to 

as general shape optimization (Bendsøe, 1989). Most of the techniques optimize either the 

topology or both the size and the shape. There are only few examples that have tried to confront 

the problem in a holistic way (M. Zhou, Pagaldipti, Thomas, & Shyy, 2004).  

 

 
Figure 1: Illustration of a truss model and its different categories of structural optimization by: a) size, b) shape 

and c) topology (Bendsøe & Sigmund, 2003).  

 

The current state of the art of topology optimization (TO) is most oriented in the conceptual 

design phase. The general idea is to find the optimal material distribution of a structure with respect 

to its design and boundary constraints. However, the main challenge of TO is to provide a design 

parameterization that leads to a physically optimal design too (Sigmund & Petersson, 1998). 

The first article about topology optimization was published in 1904 by the insightful Australian 

mechanical engineer Michell (1904). Michell’s article addressed the problem of least-volume 

topology of trusses with a single condition and a stress constraint. His contribution to topology 

optimization was the introduction of essential elements the so-called now, after a century, layout 

optimization, continuum-type optimally criteria, adjoin strain field and ground structure (Rozvany, 

2009). After approximately 70 years it was Rozvany (1972) who extended Michell’s theory from 

trusses to beam systems and introduced the first general theoretical background of topology 

optimization termed ‘optimal layout theory’ (Rozvany, 1977). The scientific revolution in this field 

had begun and it has been mainly carried out the last 30 years with many interesting articles. There 

are three main approaches which deal with the topology optimization problem: element-based 

solution approaches (density, topological derivatives, level set, phase field, etc.), discrete 

approaches (evolutionary based algorithms) and combined approaches (Sigmund & Maute, 2013). 

The most known methods of topology optimization are: the solid isotropic material with 

penalization (SIMP) and the evolutionary structural optimization (ESO) or the bi-directional 

evolutionary structural optimization (BESO). 
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In the same direction, either gradient-based (optimality criteria algorithm, convex linearization, 

method of moving asymptotes, etc.) or non-gradient algorithms (genetic algorithms) were 

developed to support the theory of topology optimization.  

Optimality criteria algorithm (OC) is the most fundamental gradient-based mathematical 

method. In this method, there is a proportional dependency between the design variables and the 

values of the objective function (Prager, 1968). The 99-line MATLAB by Sigmund (2001), which 

tackles the compliance problem for the Messerschmitt-Bölkow-Blohm (MBB) beam, is based on 

OC and nested analysis and design formulation (NAND). Convex linearization (CONLIN) is a 

linear mathematical programming method for structural optimization with mixed variables and 

respect to the problem’s characteristics. This method was introduced by Fleury and Braidbant 

(1986). Svanberg (1987) presented the method of moving asymptotes (MMA) which is a more 

aggressive version of CONLIN that is expanded by moving limits. The MMA creates an enormous 

sequence of improved feasible solutions of the examined problem.  In addition to that, it can handle 

general non-linear problems and simultaneously take into account both constrains, design variables 

and characteristics of the structural optimization problem (cost, robustness, etc.). That was the 

foundation of the homogenization method (isotropic material) which was conducted the next year 

by Bendsøe and Kikuchi (1988) and a predecessor of the density-based approach of solid isotropic 

material with penalization (SIMP) (Bendsøe, 1989; M. Zhou & Rozvany, 1991) 

The most notable non-gradient algorithms are the successive linear programming (SLP) and the 

successive quadratic programming (SQP). Both these methods transform the non-linear problem 

to a linear at a design point and optimize it within a limited region by movable boundary limits 

(Dantzig, 1963). 

The aim of this paper is to give an overview over the different topology optimization approaches 

and practices. In addition, we run a case study of a ski binding using different practices of design 

optimization in order to implement the approaches and identify their needs. Of particular interest 

is the problem of the a priori fixed boundary and the real nearby limits to the potential designs and 

solutions. 

2. Topology optimization (TO) and Finite Element Analysis (FEA) 
Topology optimization is an iterative procedure adapted to the computer-added design (CAD). The 

main goal of this method is the best structural performance through the identification of the 

optimum material distribution inside the available volume of a structure with respect to its loads, 

boundary conditions and constraints. If  TO is integrated into the traditional finite element analysis, 

the procedure can be divided to 8 steps as it is shown in Figure 2. This figure illustrates the 

geometry shift of a structure from its original geometry to topology geometry. In the beginning, 

FEA is implemented. It is possible to be used geometric modifications in order to simplify the 

initial problem. This stage is challenging to be computerized because it involves applying 

experience and judgement in a qualitative manner. However, the most crucial step at FEA is the 

definition of the problem statement and its equivalent mathematical model with all the required 

parameters (material properties, loads and restraints). The optimum results occur through the 

discretization (meshing) of the model and with a repetitive convergence method. The topology 

optimization method offers a new optimized design geometry with a notable mass reduction (or 

increment) which can be used as a new starting point for the FEA. Finally, the new FEA results 

validate or evaluate the success of the TO approach. 
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Figure 2: The geometry shift model of a cantilever beam with Abaqus based on the Kurowski FEA model (2017, 

pp. 10-11) and Simulia’s ATOM lifecycle. 

3. The general topology optimization problem 
The general mathematical solution of a continuous element-based optimization problem seeks the 

minimum (top down) or maximum (bottom up) value of a function 𝑓(𝑥) and its related variable 

vector 𝑥 = (𝑥1, … , 𝑥𝑛) 𝜖 𝐼𝑅𝑛 which generates it, with respect to possible conditions and 

constrains. According to Hassani and Hinton (1999, p. 3), the 𝑓 can be called the objective or cost 

function and respectively the quantities 𝑥𝑖, 𝑖 = 1, … , 𝑛 design variables and 𝑛 the number of 

design variables. The design variables are depended due to equalities among the constrains, so it 

can be assumed that the real design space is a sub-space of 𝐼𝑅𝑛, where its dimension will be 𝑛 

minus the number of the independent equality constraints. Then the optimization problem can be 

expressed as: 

 

𝑓(𝑥)   minimize this objective function 

ℎ𝑗(𝑥) = 0,  𝑗 = 1, … , 𝑛ℎ equality constrains 

𝑔𝑘(𝑥) ≤ 0,  𝑘 = 1, … , 𝑛𝑔 inequality constraints 

𝑥𝑖
𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑢,  𝑖 = 1, … , 𝑛 design variables 

(1) 

 
where 

𝑛ℎ: number of equality constraints 

𝑛ℎ: number of inequality constraints 

𝑛ℎ: number of design variables 

𝑥𝑖
𝑙: lower bound of the design variable 𝑥𝑖 

𝑥𝑖
𝑢: upper bound of the design variable 𝑥𝑖 

 

The term feasible domain can be used for the set of design variables which satisfy all the equality 

constrains and respectively infeasible domain the set of them which outrage at least one. Hence, 

there are either linear optimization problems, where both equality and inequality constraints are 
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linear functions of the design variables or non-linear optimization problems (most of the structural 

optimization problems), where at least one of the constraints is a non-linear function of the design 

variables (Hassani & Hinton, 1999, pp. 3-4). 

 

4. Topology Optimization approaches 
Topology optimization approaches can be categorized into element-based, discrete and combined, 

depending on the different argorithms they use. 

4.1 Element-based approaches 

The traditional topology optimization approaches are element-based. The general approach of 

these methods is the discretization of the problem domain in a number of finite elements whose 

solution is known or can be approximated. The definition of CAD geometry, by a number of solid 

elements and their connection points (nodes), is a prerequisite in FEM. These nodes have known 

degrees of freedom (loads, temperature, displacement, etc.). All the discrete solid elements of the 

model are used in their turn, in the definition of the mathematical interactions of node’s degrees 

of freedom and are combined to create the system’s equations. Finally, the solutions of these 

equations expose useful information about the system’s behavior (Thompson & Thompson, 2017, 

pp. 1-2).  

As a consequence, topology optimization can extend the FEA-geometry of the model to the 

FEATO-geometry (combined FEA and TO geometry, see Figure 2). This iterative convergence 

method indicates either full material, partial material or lack of material to each solid element. The 

interpretation and verification of the TO’s results is a demanding procedure, especially in the case 

of combined size and shape optimization (Harzheim & Graf, 2005). The main challenge is that the 

building models have to be as close as their FEATO-geometry. If the interpretation of the results 

is not done properly from the designer, the whole optimization process will lose its significance 

(Cazacu & Grama, 2014) 

The most notable element-based approaches are the density-based (gradient-based), the 

topological derivatives, the level set and phase filed approach.  

At the density-based approaches, the basic topology optimization problem is tackled by 

discretizing the design domain 𝛺 (allowable volume within the design can exist) using either solid 

elements or nodes. One of the most implemented and mathematically well-defined interpolation 

methodologies is the solid isotropic microstructure with penalization (SIMP). Other notable 

density-based methods are the rational approximation of material properties (RAMP), the optimal 

microstructure with penalization (OMP), the non-optimal microstructures (NOM) and the dual 

discrete programming (DDP) (Luo, Chen, Yang, Zhang, & Abdel-Malek, 2005; Rozvany, 2001; 

Sigmund & Maute, 2013) 

Eschenauer et al. (1994) initiated the approach of topological derivatives known also with the 

name ‘bubble-method’. According to this approach, a microscopic hole (bubble with center 𝑥 and 

radius 𝜌) is introduced at point 𝑥 in or out of the design domain 𝛺 in order to predict the influence 

(derivative) and trigger the creation of new holes. The bubble-method is a special case of 

homogenization, where the topological derivatives represent the limit of density going to 0 (void). 

These derivatives can indicate the ideal placing of a new hole or can be used either together with 

the level set approach or directly in element-based update schemes (Allaire, 1997; Burger, Hackl, 

& Ring, 2004; Eschenauer et al., 1994). 
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Level set models (Osher & Sethian, 1988) are characterized from their flexibility, dealing with 

demanding topological changes, due to implicit moving boundary (IMB) models (Jia, Beom, 

Wang, Lin, & Liu, 2011). These complex boundaries can form holes, split into multiple pieces, or 

merge with other boundaries to form a single surface. Hence, the adaptive design of the structure 

is carried out to solve the problem of structural topology optimization. At the traditional level set 

method (LSM), the boundary of structure is defined by the zero level (contour) of the level set 

function 𝜑(𝑥). The zero level, in its turn, is derived by the objective function (such as energy of 

deformation, stress, etc.) and the optimal structure can be obtained through the movement and 

conjunction of its external boundary. The structure is defined by the domain 𝛺, where the level set 

function takes positive values (Sigmund & Maute, 2013). 

Phase field methods correspond to density approaches with explicit penalization and 

regularization. The initial approach was implemented by Bourdin and Chambolle in order to carry 

out perimeter constrains and represent the surface dynamics of phase transition phenomena, such 

as solid-liquid transitions (2003). This approach works directly on the density variables and is 

based on a continuous density field 𝛺 which eliminates the need for penalization of interfaces 

between elements (Wallin & Ristinmaa, 2014). 

4.2 Discrete approaches 

As it was mentioned at section 3, the basic topology optimization problem uses discrete variables. 

Hence, it is reasonable to deal with it by formulating it instantly in discrete variables. However, 

this mathematical solution (sensitivity analysis) can be very challenging. In addition, this approach 

has some limitations with respect to size of problems and structures (Mathias Stolpe & Bendsøe, 

2011). Nevertheless, there are some notable discrete approaches, such as the evolutionary 

structural optimization (ESO), additive evolutionary structural optimization (AESO) and the 

bidirectional evolutionary structural optimization (BESO), which have considerable efficiency. 

4.3 Combined approaches 

As it is mentioned at section 1, the most of the topology optimization methods use, as optimizing 

parameter, either only the topology of the elements/nodes or both the size and shape of the 

structure. There are not many approaches which try to confront the problem in a holistic way. 

Some  notable combined topology optimization approaches are the extended finite element method 

(xFEM) (Van Miegroet & Duysinx, 2007) and the deformable simplicial complex (DSC) (Misztal 

& Bærentzen, 2012). On the one hand, the purpose of the xFEM was an introduction of a 

generalized and adaptive finite element scheme which could allow us to work with meshes that 

can represent smooth and accurate boundaries. On the other hand, DSC scheme combines 

nonparametric shape optimization approaches with the ability to introduce and remove holes. 

 

5. Comparison of the different Topology Optimization approaches 
At this section, is presented a comparison between the main topology optimization approaches 

with respect to their procedure (top down/bottom up), characteristics, strengths and weaknesses. 

The comparison is based on both review and research papers about topology optimization and is 

shown in Table 1. 
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Table 1. Comparison of the Topology Optimization Approaches 

Approach Procedure/Description Strengths Weaknesses 
Recom. 

papers 

C
a
te

g
o
ry

 

E
le

m
en

t-
b
as

ed
 

D
en

si
ty

-b
as

ed
 

Solid Isotropic 

Microstructures with 

Penalization (SIMP) 

 Eulerian (fixed mesh) method 

 Discretization to solid isotropic elements 

 Remove material 

 Nested analysis and design approach (NAND) 

 Minimize the compliance subject to a volume 

constrain problem via an iterative converge method 

 ‘Soft-kill’ penalization method (white: void, gray: 

fractional material, black: material) 

 Homogenization is not a prerequisite 

 Computational efficiency  

 Robustness 

 Adaptive to (almost) any design 

condition 

 Freely adjusted penalization 

 Conceptual simplicity (no higher 

mathematics required 

 Available for all combinations of 

designs constrains 

 Intermediate densities 

 Mesh-dependent 

 Dependent on the degree of penalization 

 Nonconvex 

(Bendsøe, 1989; 

Rozvany, 2001; 

M. Zhou & 
Rozvany, 1991) 

Rational Approximation of 

Material Properties (RAMP) 

 Eulerian (fixed mesh) method 

 Based on SIMP 

 Nonzero sensitivity at zero density 

 

 Convex  Dependent on the degree of penalization 

 Numerical  difficulties  in low  density   

(Deaton & 
Grandhi, 2014; 

Luo et al., 2005; 
M. Stolpe & 

Svanberg, 2001) 

Optimal Microstructure with 

Penalization (OMP) 

 Eulerian (fixed mesh) method 

 Based on SIMP 

 Discretization to optimal nonhomogeneous elements 

 ‘Hard-kill’ penalization method (white: void, black: 

material) 

 More information about the 

isotropic-solid/empty/porous (ISEP) 

optimum 

 

 Intermediate densities 

 More computational effort than SIMP 

 Nonrobust 

 Advanced mathematics 

 Nonconvex 

 Requires homogenization 

 Dependent on the degree of penalization 

 Available only for compliance 

 

(Allaire, 1997; 

Rozvany, 2001) 

Non-Optimal 

Microstructures (NOM) 

 Eulerian (fixed mesh) method 

 Based-on SIMP 

 Discretization to nonoptimal nonhomogeneous 

elements 

 No penalization 

 Available for all combinations of 

designs constrains 

 Less variables/element than OMP 

 More variables/element than SIMP 

 Fix and insufficient penalization 

 Nonconvex 

 Requires homogenization 

(Bendsoe & 

Kikuchi, 1988; 

Rozvany, 2001) 

Dual Discrete Programming 

(DDP) 

 Eulerian (fixed mesh) method 

 Discretization to solid isotropic elements 

 Remove material 

 Penalization is not necessary  Available only for compliance 

 

(Beckers & 

Fleury, 1997; 
Rozvany, 2001) 

Topological derivatives ( ‘The 

Bubble-method’) 

 Lagrangian (boundary following mesh) method 

 Special case of homogenization 

 Remove material 

 Combine shape and topology optimization 

 Introduce microscopic hole in order to predict the 

influence (derivative) and trigger the creation of new 
holes 

 Indirectly include filtering by 

mapping between nodal and element 

(or subelement) based on design 
variables. 

 Complex mathematics 

 It is yet unclear whether the computed 

derivatives are useful 

(Allaire, 1997; 

Burger et al., 

2004; Eschenauer 
et al., 1994) 

Level set   Eulerian (fixed mesh) and Hybrid methods 

 Operate with boundaries instead of local density 

variables. 

 Implicit moving boundary (IMB) models 

 Flexibility in topological changes 
 Can be mesh-independent 
 Can find shape variations for robust 

design 

 Restricted geometry from existing 

boundaries 

 Inability to generate new holes at points 

surrounded by solid material (in 2D) 

(Jia et al., 2011; 

Osher & Sethian, 

1988) 
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 Boundaries can form holes, split into multiple pieces, 

or merge with other boundaries to form a single 

surface 

 Boundary of structure = zero level (contour) 

 Modified density approach (uses shape derivatives for 

the development of the optimal topology) 

 Most use ersatz material and fixed meshes 

 Formulate objectives and constraints 

on the interface and describe 

boundary conditions at the interface 

 Starting guess results 

 Regularization, control of 

the spatial gradients of the level set 
function, and size control 

of geometric features 

 Must combined with topological 

derivatives in 2d 

 

Phase field  Eulerian (fixed mesh) method 

 Works directly on the density variables 

 Smooth the design field by adding the total density 

variation to the objective 

 Correspond to density approaches with explicit 

penalization and regularization 

 Total density variation to the 

objective 

 Carry out perimeter constrains and 

represent the surface dynamics of 

phase transition phenomena such as 

solid-liquid transitions 

 Very slow boundary translation and 

convergence solution 

(Bourdin & 
Chambolle, 2003; 

Wallin & 

Ristinmaa, 2014) 

D
is

cr
et

e 

Evolutionary Structural 

Optimization (ESO) 

 Use of discrete variables 

 Remove material 

 ‘Hard-kill’ method (white: void, black: material) 

 The structure turns into an optimum by repetitively 

removing inefficient material 

 The elements with the lowest value of their criterion 

function are eliminated 
 

 Small evolutionary ratio (ER) and 

fine mesh can produce a good 

solution 

 Mesh and parameters dependent 

 Heuristic 

 Computationally rather inefficient 

 Methodologically lacking rationality 

 Tackle only simple 2D problems 

 Breaks down with rapidly changing 

sensitivity 

(Yi Min Xie & 

Huang, 2010; Yi 
M Xie & Steven, 

1993; M Zhou & 

Rozvany, 2001) 

Additive Evolutionary Structural 

Optimization (AESO) 

 Based-on ESO 

 Use of discrete variables 

 Add material (to reduce the local high stresses) 

 Optimization starts from a core structure that is the 

minimum to carry the applied load 

 Small evolutionary ratio (ER) and 

fine mesh can produce a good 
solution 

 Mesh and parameters dependent 

 Heuristic 

 Computationally rather inefficient 

 Methodologically lacking rationality 

 Tackle only simple 2D problems 

 Breaks down with rapidly changing 

sensitivity 

(Querin, Steven, 

& Xie, 1998, 

2000; Querin, 
Young, Steven, & 

Xie, 2000) 

Bidirectional Evolutionary 

Structural Optimization (BESO) 

 Mathematically combination of ESO and AESO 

 Use of discrete variables 

 Add and remove material where needed 

 0: absence of element, 1: presence of element 

 Mesh-independent 

 Reduction of computational time 

comparing to ESO 

 Adaptive shape 

 Using a small evolutionary ratio ER 

and a fine mesh can produce a good 

solution 

 Can be dependent on mesh (Huang & Xie, 
2007; Querin, 

Young, et al., 

2000) 

C
o
m

b
in

ed
 

Extended Finite Element Method 

(xFEM) 

 Generalized shape optimization 

 Introduction of a generalized and adaptive finite 

element scheme which work with meshes that can 

represent smooth and accurate boundaries 

 Based on level set. 

 Overcome FEM discontinuities 

 No remeshing is required 

 Can study large 3D scale industrial 

problems 

 Large errors in the stress estimation (Van Miegroet & 
Duysinx, 2007) 

Deformable Simplicial Complex 

(DSC) 

 Hybrid method 

 Combine nonparametric shape optimization and 

introduction/removal of holes 

 Robust topological additivity 

 Topology control natural and simple 

 Allows for nonmanifold 

configurations in the surface mesh 

 Numerical diffusion 

 Slower than the level 

set method 

 Insufficient mesh quality 

(Misztal & 
Bærentzen, 2012) 
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6. Design optimization practices and examples 
It is important to differentiate between a local optimum (a solution of a defined CAD model) and 

the optimal solution of a structural problem. A lot of design optimization practices have been 

developed the last years which try to combine both topology, shape and/or size optimization 

approaches in order to avoid the local optimum. Three main categories have been identified: a) 

predefined design space practice, b) maximum possible design space practice (with respect to 

boundary conditions) and c) integrated shape and topology optimization practice (IST). An 

overview of these practices is presented in Table 2. 

 
Table 2. Overview of the design optimization practices 

Practice Examples Strengths Weaknesses 
Recom. 

papers 

Predefined 

design space 
Upper carriage of a naval gun 

Partially hold of 

the initial visual 

design 

Restricted design 

space (fixed 

dimentions and 

boundary conditions)  

(Wang & Ma, 

2014) 

Maximum 

possible 

design space 

Laser-remote-scanner 

Larger design 

space (less 

restrictions on the 

algorithm) 

Restricted design 

space (fixed 

dimentions and 

boundary conditions) 

(Emmelmann, 
Kirchhoff, & 

Beckmann, 2011) 

Compressor bracket 
(Chang & Lee, 

2008) 

Trailer chassis 
(Ma, Wang, 

Kikuchi, Pierre, & 
Raju, 2006) 

Hanger 
(McKee & Porter, 

2017) 

Integrated 

shape-and 

topology 

optimization 

practice 

Automotive Design and 

Manufacturing 

Optimization of  

boundary 

conditions 

Computationally 

costly and time 

consuming 

(Fiedler, Rolfe, & 
De Souza, 2017) 

 

7. Case study of a ski binding 
In order to present the limitations of the topology optimization approaches and design practices, 

an example of a minimum compliance design of a ski binding will be presented. The optimization 

problem is restricted due to time and computational limitations. We assume that the applied forces 

are given and the ski binding is fixed to the ground with four screws. Hence, the topology 

optimization of the structure is conducted in conjunction with the optimization of the positions of 

the screws. In this case, the model was built in Abaqus CAE 2017 and the optimization was 

conducted using the optimization software Tosca Structure, which is based on SIMP topology 

optimization approach. First the three main practices were tested in our case and finally a new 

practice is recommended based on the identified limitations of the existing practices. 

7.1 Topology optimization of a ski binding 

In Figure 3, both the predefined design space and maximum possible design space practices of the 

ski binding are presented.  
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Figure 3: Ski binding optimization with use of a) the predefined design space (left) and b) the maximum possible 

design space practice (right) 

As it is shown in Figure 3, the maximum possible design space practice resulted to an optimum 

with a larger design space. 

In Figure 4, is illustrated the mathematical model in the IST practice which consists of the design 

envelope, a set of screws and a contact set with a ski. As dynamic design parameters are used the 

distance 𝑑 between the pairs of the screws and the thickness 𝑡 of the support structure under the 

yellow area.  

 

 

Figure 4: Topology optimization with IST practice of the ski binding with thickness of the support structure, 

𝒕 = 𝟐𝒎𝒎 (yellow colour) and different distances between the pairs of screws (from left to right),  𝒅 = 𝟑𝟓. 𝟓𝒎𝒎, 

𝒅 = 𝟑𝟎. 𝟓𝒎𝒎, 𝒅 = 𝟐𝟓. 𝟓𝒎𝒎 and 𝒅 = 𝟐𝟎. 𝟓𝒎𝒎. 

Two different studies are executed in order to detect the optimal solution. In the first study, the 

chosen thickness of the support structure is 𝑡 = 2𝑚𝑚, while the distance 𝑑 between the pairs of 

screws are decreased by 5𝑚𝑚 in each iteration in a range of 20.5 − 35.5𝑚𝑚 (see Figure 4). In 

the second study, the same screw-hole patterns are re-tested but now with thickness of the support 

structure, 𝑡 = 5𝑚𝑚 (see Figure 5). 

 

Figure 5: Topology optimization with Abaqus 2017 of the ski binding with thickness of the support structure, 

𝒕 = 𝟓𝒎𝒎 (yellow colour) and different distances between the pairs of screws (from left to right),  𝒅 = 𝟑𝟓. 𝟓𝒎𝒎, 

𝒅 = 𝟑𝟎. 𝟓𝒎𝒎, 𝒅 = 𝟐𝟓. 𝟓𝒎𝒎 and 𝒅 = 𝟐𝟎. 𝟓𝒎𝒎. 

Comparing the results of the three practices, TO model 1 and TO model 6 from the IST practice 

are the solutions with the lowest strain energy (i.e. the stiffest result) and thus the local optimum 

in study one and two respectively.  
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7.2 Evaluation of the applied practices 

It is clear that these practices led to a local optimum and not to the best optimized solution of the 

ski binding. It is crucial to understand that the optimum solution to a defined setup might not be 

the ideal solution to the problem. In other words, the optimum material distribution is influenced 

by the initial boundary conditions defined by the engineer. Therefore, it is not possible to find the 

real optimum of a structure, if its outer boundary conditions are not optimal and predefined. Then 

it is necessary to find first the optimum input (boundary conditions) for the topology optimization, 

and second the optimum material distribution. 

In this case, the identification of the real optimum has been carried out by comparing the different 

optimized design models in the conducted practices. However, this methodology has several 

limitations such as the requirement of a huge amount of time and computer capacity due to the 

analysis of big data (different sizes and placements of screws, variation of the support structure for 

the loads and boundary conditions, etc.). This method also implies the need of all the setups to be 

defined by an engineer, making the final design more vulnerable to human error and his/her 

previous experience. 

7.3 Suggestions about a new practice 

The success of a topology optimization approach could be achieved through the identification of 

the evolutionary probing of the design boundaries. Hence, the topology optimization problem 

could be divided in two sub-problems (levels); the optimization of the outer boundary conditions, 

and the optimization for the inner optimum. The CAD-geometry of the structure could be replaced 

by a black box with the allowable design envelope (level 1). A topology optimization algorithm, 

based on NAND formulation, could be used for calculating the optimum adaptive (moving) 

boundaries of the structure with respect to outer design parameters (i.e. length, width, height, holes, 

etc.), constrains, loads and contact sets. The optimum boundary conditions could be used in their 

turn, as a starting point for a traditional topology optimization of the structure’s interior (level 2). 

The geometry shift model and the principle flow chart of this approach are presented in Figures 5 

& 6 respectively. 

 

 
 

Figure 6: The geometry shift model of a cantilever beam based on the two-level topology optimization approach 

with Abaqus 2017 
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A comparison between the traditional (Figure 2) and the two-level (Figure 6) geometry shift 

shows that both CAD and FEA geometries have been replaced by a more ‘generative design based’ 

optimization approach. This can result in optimum and high applicable structural designs with 

minimized human error and reduced number of convergence iterations. 

 
Figure 7: Principle flow chart for the two-level topology optimization approach 

 

8. Conclusion and future research potentials 
In this paper, in the first section, was presented the general topology optimization problem and the 

most implemented topology optimization approaches. The most used and commercial applied 

method is the SIMP. ESO is also a promising method with many potentials, but it is still missing 

the mathematical background for multiple constraints and loads. However, all the approaches have 

their advantages and limitations. Both SIMP and ESO are dependent on the design parameters 

(CAD), mesh and boundary conditions of the structures.  

In the second section, some design optimization practices were used in the case of a ski binding. 

Through the applied optimization practices and their results we agreed on the following 

limitations: 

 CAD is a limited design methodology due to its design parameters restrictions to known 

geometries. 

 CAD encourages the re-usage of previously designed objects resulting in robust but 

nowhere near optimum designs. 

 The main key limitation of the topology optimization is its sensitivity to the spatial 

placement of the involved components and the configuration of their supporting 

structure. For example, the local optimum of the ski binding will be completely different 

if we use three screws instead of four. 

 Many topology optimization approaches are still dependent on starting guesses. 

 All the existing topology optimization approaches and practices are time consuming and 

demand huge computational effort when they try to tackle big 3D construction models. 
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It is clear that there is a need of new practices which could overcome these limitations. 

Suggestions about a new practice were presented. The main goal of this approach is to implement 

a two level optimization, first the outer bounder conditions optimum and as a consequence the 

inner optimum which is based on the first one. A geometry shift model and a principle flow chart 

of this approach were presented. Further research, validation of the applicability of this practice 

and the development of its mathematical formulation are needed to be done. 
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