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Abstract  
The development of high-quality products, which simultaneously address the customer’s needs, 
is a key challenge for companies nowadays. Besides features and technology a customer 
assesses a product by its sensory characteristics, i.e. primarily on the basis of visual, acoustics 
and haptic perception. Although the general importance of the sensory design of products has 
been recognized by industry, methodical aspects regarding the realization thereof are still 
insufficient in certain areas.  
Besides e.g. the simulation of sensory perception, the reproduction of customers’ habitus to 
sensorily approach and explore products is still not fully understood. In this context, especially 
the manner of haptic exploration of product surfaces plays an important role during the overall 
assessment of quality. Knowing the haptic exploration is necessary for the technical replication 
of customers’ perception e.g. with special haptic sensors. 
Haptic characteristics of products or materials are explored performing specific movements of 
the hands, so-called exploration procedures. An exploration procedure is a movement pattern, 
which is motivated by the object properties such as shape, size and surface.  
The aim of the work is to devise an automatic system, which is able to record specific surface 
exploratory procedures and to effectively identify representative gestures by means of machine 
learning. It is assumed that customers explore surfaces in their own way; however, the gestures 
they use are similar between customers to a great extent and can therefore be clustered into 
homogeneous groups of gestures. 
For recording the exploratory movements and the human surface interaction, a Leap Motion 
Controller by the American company Leap Motion, Inc. is applied. 
To investigate the usability of the Leap Motion Controller for the intended aim, two empirical 
studies are conducted by asking subjects to explore a textile surface. The extracted data from 
the controller of the first study is used to define groups of gestures. The second study is used to 
train different algorithms to assign the executed exploration movements to the predefined 
groups of gestures. 
The results show that the developed method is effective, i.e. it is possible by means of machine 
learning to show that customers use the same exploration gestures for material surfaces. 



Knowing how customers approach a material surface enables e.g. product design departments 
to reproduce customers’ habits and to address the customers' haptic perception to their interests.  
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1 Introduction 
Product quality does not only depend on technical and functional characteristics but also on 
emotional components, the design and the materials (Schmitt & Belda-Lois, 2014). In order to 
differentiate from the competition, companies today have to cope with the challenge to produce 
high-quality products, which simultaneously address the customer’s needs (Schmitt & Kristes, 
2008). By approaching and assessing a product’s characteristics, customer make use of their 
various sensory modalities. Especially the customers’ perception of materials and surfaces 
plays a decisive role in the final purchase decision (Baumgartner, Wiebel, & Gegenfurtner, 
2013; Fujisaki, Tokita, & Kariya, 2015; Schmitt & Belda-Lois, 2014). The knowledge of the 
human exploration behavior regarding products and the investigation of the human subjective 
impressions are necessary for the technical replication of customers’ perception and thus the 
design of desired products.  
Human perception is focused within the research area of perceived quality (PQ) (Krishna & 
Morrin, 2008). One aspect of PQ is the investigation of the human haptic exploration of 
products, which allows the recognition of product attributes e.g. size, contour, weight and 
material characteristics (Grunwald, 2008). In order to design a product, which meets the 
customer’s needs it is important to know which gestures and movements a human conducts. 
The reproduction of customers’ habits to sensorily approach and explore products is, however, 
still not fully discovered.  
For recording the exploratory movements and the human surface interaction, a Leap Motion 
Controller manufactured and distributed by the American company Leap Motion, Inc. is 
applied. The Leap Motion Controller is a small device based on infrared technology. It is able 
to track hand and finger movements, allowing to record information within a hundredth of a 
millimeter, without any visible latency. This commercially available device was invented and 
is primarily used for virtual reality applications in free space. However, it bears the potential 
for a gesture recognition system for exploration procedures over surfaces. 
The aim of this work is to devise an automatic system, which is able to record specific surface 
exploratory procedures and to effectively identify representative gestures by means of artificial 
intelligence. It is assumed that customers explore surfaces in their own way; however, the 
gestures they use are similar between customers to a great extent and can therefore be clustered 
into homogeneous groups of gestures. 
To investigate the usability of the Leap Motion Controller for the intended aim, two empirical 
studies with groups of subjects were conducted. In the first study, the subjects were asked to 
explore a textile surface stretched over a spherical cap with a surface tension between 5-10% 
with their preferred hand without any further prescribed instructions. This study was used to 
define the homogeneous groups of gestures.  
In order to verify and validate the proposed approach, the second group of subjects was asked 
to perform different exploration procedures over the same surface. After processing the 
measurement data from the controller, recognition model based algorithms were applied for the 
purpose to assign the different exploration movements to the specified gesture groups. 
The results show that the developed method is effective i.e. it is possible by means of machine 
learning to show that customers use the same exploration gestures for material surfaces. 



2 State of the art 
In the following, relevant research regarding touch and haptic exploration as well as studies 
performing gesture recognition with a Leap Motion Controller will be outlined. 
2.1 Fundamentals of Touch and Exploration Procedures 

McLinden and McCall distinguish between active and passive touch (McLinden & McCall, 
2016). Active touch describes an intended movement, usually conducted with the hands, which 
implies independent exploratory and manipulative use of the skin. Passive touch describes the 
incident of being touched either by an object or by another person, which means that the contact 
was unintended.  

 
Figure 1 - Exploration procedures (Jansen, Bergmann Tiest, & Kappers, 2013; Lederman & Klatzky, 1993; 
Theurel, Frileux, Hatwell, & Gentaz, 2012; Withagen, Vervloed, Janssen, Knoors, & Verhoeven, 2009) 

Regarding to active touch Klatzky and Lederman revealed in 1987 that subjects of their study 
perform purposive and systematic movement patterns when they were asked to explore a 
surface area (Lederman & Klatzky, 1993). For these recurring patterns, they established the 
expression “Exploratory Procedure”, shortform “EP” (compare Figure 1). In total, they 
identified six different EPs whereby every procedure is linked to a specific object dimension 
and is optimal for investigation of that property. Klatzky and Lederman propose the following 
EPs: contour following (CF) for local shape; pressure (PR) for compliance; lateral motion (LM) 
for roughness; static contact (SC) for temperature; unsupported holding (UH) for weight; and 
enclosure (EN) for global shape (Lederman & Klatzky, 1993). The described exploratory 
strategies can be subdivided into specific and nonspecific exploratory procedures (Withagen et 
al., 2009). EN and UH  belong to the group of the nonspecific exploratory procedures, which 
provide global information about an object. The specific procedures such as CF, PR, SC and 
LM give exact information about an object (compare Figure 1). Humans merge the different 
EPs to perceive a variety of object properties; it thus paves the way for object recognition 
(Jansen et al., 2013).  
Based on Klatzky and Lederman’s findings Jansen et al. identified haptic exploration 
procedures by analyzing hand dynamics and used forces (Jansen et al., 2013). In order to 
measure the fingertip movement and the resulting forces they utilized an NDI Optotral Certus 
system, which is able to record three-dimensional data of infrared emitting diodes applied to 
the exploring hand. A digital weighting scale was used to measure the contact force resulting 
from the fingertip movements. Eight subjects participated in this research and they were asked 
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to explore 20 stimuli. The stimuli had different shapes and materials. With their applied 
methodology, they revealed a way to classify exploration procedures over surfaces.  
Further studies relating to active touch and exploration procedures especially regarding 
exploration force and speed exist in literature. Smith et al. discovered that the surface friction 
has an influence on the adjustment of the tangential finger speed as well as the normal contact 
force during performing active exploration procedures with the fingertip (Smith, Gosselin, & 
Houde, 2002). Furthermore, Kaim and Drewing ascertained that the softer a surface is, the faster 
the movement speed and the less force are applied for the exploration procedure over a surface 
(Jansen et al., 2013; Kaim & Drewing, 2009). 
The presented research does not indicate an automatic gesture recognition of exploration 
procedures over material surfaces with commercially affordable devices. Such an automatic 
system can help to answer the thesis that customers use similar gestures to a great extent while 
exploring surfaces. Through the usage of a Leap Motion Controller, which is usually used for 
virtual reality applications, the human haptic exploration of surfaces as well as haptic perception 
may be recorded and analyzed more precisely. An overview of current Leap Motion Controller 
applications regarding gesture recognition is given in the following. 
2.2 Gesture Recognition with Leap Motion Controller 

Mohandes et al. developed an approach to recognize Arabic sign language by using multi sensor 
data fusion of two Leap Motion Controller (LMC) (Mohandes, Aliyu, & Deriche, 2015). For 
each of the 28 signs of the Arabic alphabet Mohandes et al. recorded 100 frames, so in total 
2800 frames. Aim of the research was to recognize sign language efficiently through gestures 
of hands and fingers, which were detected by two LMCs. The feature fusion from the two LMCs 
revealed classification accuracies over 97% and yielded a better recognition compared to the 
use of a single LMC.  
A similar study conducted in 2014 by Chuan et al. was based on the recognition of the American 
Sign Language (ASL) alphabet by utilizing a LMC (Chuan, Regina, & Guardino, 2014). Over 
7900 observations were collected by two members of the University of North Florida. Chuan 
et al. extracted five different features from the recorded data of the LMC for a machine learning 
process. A cross validation was implemented for supervised classification training. For the 
classification process k-nearest neighbor (k = 7) and support vector machines (SVM) 
algorithms were used revealing accuracy rates of 72.78% and 79.83%, respectively.  
Besides recognition of sign language, Chan et al. investigated the possibility of authentication 
performing gestures instead of using passwords for a login scenario utilizing the LMC (Chan, 
Halevi, & Memon, 2015). The work revealed a classification accuracy of 99%. The data 
acquisition of gestures was conducted while users used the LMC to read and navigate through 
Wikipedia pages. A template was created using the user attributes that were found to have the 
highest performance. When matching the template to the users collected data, the authentication 
provided an accuracy of over 98 % and an equal error rate of 0.8%. This research demonstrates 
the potential of the LMC for the authentication of users during the login process as well as 
during performing continuous activities. 
McCartney et al. investigated the possibility of a Leap Motion Controller gesture recognition 
system by implementing a convolutional neural network (CNN) in order to classify the hand 
movement data (McCartney, Yuan, & Bischof, 2015). They collected 9600 observations (800 
per gesture) from 100 subjects performing a set of twelve different gestures. As a result from 
the implementation of the CNN, they yielded an accuracy rate of 92.4%.  
The presented gesture recognition research with the LMC was not carried out for hand 
interactions with objects or surfaces but for hand movements in free pace.  



Motivated by Jansen’s classification of exploration procedures over surfaces and by the 
successful application of gesture recognition with the LMC the following research question 
arises: 
“Can a Leap Motion Controller be effectively used to recognize human haptic exploration 
procedures over surfaces?” 

3 Methodology of the current research 
To examine the applicability of the LMC for identifying haptic exploration procedures over 
surfaces, an empirical study was conducted. Following the data acquisition, a preprocessing 
and extraction of relevant features based on the gathered data took place. The processed data 
was used by different algorithms in order to find the best fitting model to cluster the executed 
exploration procedures. In the following, the applied sensor and the developed research 
methodology will be presented in detail.   

3.1 Sensor 
For recording the exploratory movements and the human surface interaction, a LMC is applied. 
The LMC is a commercially available device based on infrared and optical technology. The 
hardware consists of two high-precision monochromatic infrared cameras and three separate 
infrared LED emitters. The LMC is able to track hand and finger movements, allowing to record 
information within a hundredth of a millimeter without any visible latency. 
The LMC operating area is a reverse pyramid of about 0.25m³ centered in the middle of the 
device (compare Figure 2). The hemispherical area can roughly observe a distance of about 
600 mm and encompasses a field of view of approximately 150 degrees (Chan et al., 2015). 
The record rate is proximately 200 frames per second. The LMC software presents the collected 
data as a dynamic internal model of the human hand. The hand, finger and palm tracking works 
best when the controller has a clear, high-contrast view of the hand’s outline. The system 
employs a right-handed Cartesian coordinate system with the origin centered at the top of the 
LMC (compare Figure 2) (Mohandes et al., 2015).  
The LMC was invented and is primarily used for virtual reality applications in free space. 
However, it bears the potential for a gesture recognition system for exploration procedures over 
surfaces.  

  
Figure 2 - Leap Motion Controller Coordinate System and Operating Area (Leap Motion) 
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3.2 Research approach 

In this research project the following concept for an automatic gesture recognition was 
developed (Figure 3):  

Figure 3 - Applied methodology 

Figure 3 shows a five-step approach for recognizing gestures over surfaces.  
1. The first step is the movement recording of the possible different exploration 

procedures.  
2. For the extracted features from the LMC, the data is preprocessed so that it is in the 

correct format and has no gaps, which is an important requirement for the training 
process of the algorithm. 

3. In the third step, the collected data is clustered. This means that the data sequences are 
divided into different exploration procedures. 

4. The fourth step is the training of the recognition algorithm. 
5. The last step is the validation of the applied model. 

 
In the following, the different steps of the concept will be described in detail. 
3.2.1 Movement Recording 

Experimental Setup 
In order to create a realistic scenario of haptic exploration of a textile surface, which is normally 
used for car seats, was stretched over a spherical cap with a surface tension between 5-10% 
(compare Figure 4 on the right). The three-dimensional presentation of the textile with foam 
patting underneath enables the subjects to give a more realistic judgment. The clamping device 
has an inner diameter of 24 cm and thus offers enough space for large-area haptic exploration 
movements (compare Figure 4 on the left).  
For recording the exploration procedures over the textile a special stable mounting bracket was 
designed and manufactured out of steal. The upper surface of the bracket has a precisely fitting 
opening for the Leap Motion Controller. The LMC is then placed in the opening with the head 
side facing downwards so that the operating area of the LMC faces down onto the textile. The 
distance from the hemispherical tip to the controller origin determines 25 cm. For centering of 
the spherical cap, a locking mechanism on the base plate of the bracket in the form of a 
semicircular arch was designed. Refer to Figure 4 for an illustration of the device and the 
experimental setup.  
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Figure 4 - Experimental setup  

Preliminary Study 
In a preliminary study, five subjects were asked to explore the textile surface, which was placed 
in the bracket shown in Figure 4. The subjects’ task was to touch and explore the surface without 
any prescribed movements. The preliminary study served as an indicator to investigate which 
movements a human executes to explore the described textile surface. 
In the preliminary study it could be observed that the exploration procedures described by 
Klatzky and Lederman can be specified. Because of the experimental setup and the task 
exploring the surface and neither the global shape nor the weight the non-specific exploration 
procedures (EN and UH) could be excluded in this research. In addition, the procedure of 
contour following (CF) was not necessary here because the spherical cap (Figure 4) described 
in 3.2.1 already defined the contour of the surface. The contour remained the same throughout 
the experiment. 
During the preliminary study, it became obvious regarding gesture recognition that Klatzky and 
Lederman’s exploration procedure of lateral motion (LM) is defined too shallow. It could be 
observed in the preliminary study that the subjects used seven different gestures, which are all 
a kind of a lateral motion. Therefore, in this research the movement “Lateral Motion” (LM) was 
subdivided into seven different clusters refer to Figure 5. 

 
Figure 5 - Lateral motion (LM) on detailed level 

In addition to the seven lateral motion movements, eleven clusters were identified. For the 
exploration procedures Pressure (PR) and Static Contact (SC) one cluster each has been defined 
(Figure 6). It could also be observed that the subjects pressed the surface with one to five 
fingers. The cluster SC is described as a rest position in which the hand just lies on the surface.  

 
Figure 6 - Pressue (PR) and Static Contact (SC) on detailed level 

Further, two auxiliary clusters were introduced, mainly for learning the algorithm and for a 
better distinction of the different clusters. One auxiliary cluster was introduced for the initial 
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contact on the surface and one for transitional movements between the training of the different 
described exploration procedures.  
Study 
A total of five subjects consisting of students and research assistants of the RWTH Aachen 
University participated in this project during the data collection process.  
They were asked to perform each of the nine predefined main gestures 20 times within the 
recording range of the LMC. During each performed gesture, they were asked to use the 
auxiliary movement for a better visibility and distinction of the gestures in the data. 
Furthermore, subjects were encouraged to perform gestures in different places on the surfaces, 
and vary the speed as well as space required to perform their gestures. 
3.2.2 Feature Extraction 

In this experiment, a preselection of the relevant features was conducted for the data acquisition. 
Therefore, the LMC was programmed to return twenty-six features for each frame. The features 
are composed as follows: For each finger as well as the palm x, y, z coordinates, a velocity 
vector and a general time stamp were extracted. Figure 7 visualizes the six different 
measurement points. 

 
Figure 7 - Hand visualization by the LMC 

3.2.3 Clustering 
After the data acquisition and the feature extraction, the data set was examined for any incorrect 
or missing values. The different data series for each gesture were manually labelled. Figure 8 
shows the assignment of the eleven exploration procedures to the eleven clusters. 
 

 
Figure 8 - Assignment movement to cluster 

The result of the labeling process is a database with various clustered exploration movements. 
The next step is the training of the model and the investigation of the performance of different 
applied algorithms. 

3.2.4 Training 
In order to gain a higher validity of the modelling approach, the model was built by using a 10-
fold cross validation. A 10-fold cross validation partitions the complete data set into 10 
subsamples. Each subsample is used as a test set, while the remainder is used as a training set 
(Chan et al., 2015; Refaeilzadeh, Tang, & Liu). The performance of the cross-validation model 
depends on the applied classifier.  
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Four different algorithms were applied in this paper, namely a K-NN, Naive Bayes, Artificial 
Neural Network (ANN) and Decision Tree. The prediction accuracy was used as the 
performance valuation characteristic. Prediction accuracy expresses the correlation between the 
prediction score and the actual score. 

4 Results 
The results of the different classifiers are illustrated in Table 1. The best precision accuracy 
with a value of 88.96% +/- 1.51% is obtained by applying the ANN. Thus, the ANN fits best 
for the recognition of exploration procedures over surfaces for this research project.  
The modeling and the calculations were carried out in Rapid Miner Studio 7.2.  
 
Table 1 - Precision and Accuracy Comparison of the Different Classifiers 

Classifier Precision Accuracy 

Naive Bayes 79.29% +/- 2.35% 

Artificial Neural Network (ANN) 88.96% +/- 1.51% 

K-NN (k=3) 84.55% +/- 1.67% 

Decision Tree 73.02% +/- 2.35% 

In order to gain more insight into the validity of this modelling approach, Table 2 shows the 
precision and the recall matrix for the ANN. The yellow colored cells show the precision, the 
grey cells represent the class recall. Recall is the relation of real positive cases that are correctly 
predicted as positive (Powers, 2007). Precision represents the relation of predicted positive 
cases that are correctly real positives. These two measures and their combinations focus only 
on the positive examples and predictions.  
In the case of the ANN, it is conspicuous that in cluster 2, both the recall as well as the precision 
have the value 0%. These results indicate a random clustering of the frames allocated to cluster 
2.  
Compared to the result of Mohandes et al.’s Arabic Sign Language recognition the prediction 
accuracy is inferior. One difference is that Mohandes et al. used static data cluster while in this 
research the data cluster represent a movement and are therefore dynamic. Another difference 
is that Mohandes et al. used means of sensor data fusion by applying two LMCs in order to 
increase the prediction accuracy. 
Table 2 – Precision and Recall Matrix for the ANN 

 

5 Conclusion and Outlook 
Using a LMC and applying various classifiers, it was possible to develop an automatic approach 
to recognize exploration procedures over surfaces. Hence, the research question (compare 2.2) 
can be answered positively. Although in the different models (refer to Table 1) remain degrees 
of prediction uncertainty, the developed research approach reveals a possibility to automatically 
evaluate human exploration procedures over surfaces by means of artificial intelligence.  

true	1 true	4 true	9 true	2 true	3 true	5 true	6 true	7 true	8 true	10 true	11
pred.	1 91.34% 0.25% 1.73% 0.00% 0.00% 0.25% 0.74% 0.00% 0.99% 0.74% 3.96%
pred.	4 0.42% 87.82% 9.24% 1.68% 0.84% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
pred.	9 0.71% 0.99% 88.95% 1.98% 2.41% 1.98% 0.99% 0.85% 0.85% 0.14% 0.14%
pred.	2 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
pred.	3 8.60% 0.00% 3.17% 0.00% 88.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
pred.	5 0.00% 0.00% 8.21% 0.00% 0.00% 90.26% 1.54% 0.00% 0.00% 0.00% 0.00%
pred.	6 4.30% 0.00% 13.98% 0.00% 0.00% 1.08% 80.65% 0.00% 0.00% 0.00% 0.00%
pred.	7 3.17% 2.31% 2.31% 0.58% 0.00% 0.00% 0.00% 91.64% 0.00% 0.00% 0.00%
pred.	8 0.36% 0.00% 1.44% 0.72% 0.00% 0.00% 0.00% 0.00% 97.48% 0.00% 0.00%
pred.	10 3.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.55% 82.51% 13.66%
pred.	11 6.38% 0.00% 1.06% 0.00% 0.00% 0.00% 0.00% 0.00% 1.06% 14.89% 76.60%
class	recall 86.62% 92.89% 87.10% 0.00% 91.12% 91.19% 92.02% 98.15% 95.76% 89.35% 63.16%
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The results indicate that the LMC is a promising and affordable device for enabling gesture 
recognition services. However, there are several options to improve the model or create 
successor models based on the obtained results. In the future, it has to be investigated how the 
prediction accuracy behaves by changing the extracted features from the LMC. Furthermore, 
the developed method should be carried out with a larger number of subjects in order to increase 
the validity and generality of the model. For further research, it should also be considered to 
leave out the auxiliary clusters in order to increase the precision accuracy of the model. 
According to Table 2 the exclusion of cluster 2 (auxiliary cluster) possesses the potential to 
increase the accuracy of all classifiers. The inclusion of additional material samples, preferably 
with different surface texture properties, promises to increase the generalization of the model.  
 
A thorough understanding of human exploration of surfaces and haptic perception will help to 
improve the sensory design process of products (Jansen et al., 2013). Domains strongly linked 
to haptics (e.g. touchscreens) could benefit from this knowledge. The next step will be the 
measurement of the pressure a human applies to explore a surface. Therefore, future work will 
be to combine the LMC with a textile sensor mat and to fusion the data. This step is necessary 
to cover exploration movements holistically. 
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