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Abstract 
When reusing product knowledge in design processes, developers have to decide which knowledge 
elements are relevant for a task. Thus, mechanisms of knowledge removal are vital for a successful 
reuse, but are not yet assisted by procedure models. This contribution introduces Intentional Forgetting 
as a methodology of intelligent removal processes in ontological knowledge bases. The aim is to support 
developers by providing relevant contents for reuse systematically. The development process of a test-
rig, that is highly based on knowledge reuse, is considered as use case. 
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1. Introduction 
Forgetting is usually considered to be negative. To forget something seems not to be helpful, especially in 
light of the fact that knowledge seems to become increasingly valuable as a company resource. However, 
our memory might be overwhelmed, if we could not forget. According to Douwe Draaisma, the main 
reason for this is not that the memory capacity is too low, like a memory card, but because we would not 
be able to distinguish between important and unimportant facts (Kara, 2015). Moreover, single experiences 
form our empirical knowledge, even though the certain situations of these experiences are forgotten (Kara, 
2015). The knowledge, we are interested in here, is called implicit, which means the knowledge is linked 
to a person, foremost non-verbal and non-formalizable, e.g. in speech and writing (VDI, 2009). According 
to this, these mechanisms of forgetting might also be called implicit, because the forgetting happens 
unconsciously and intuitively, for instance, when the implicit knowledge is not relevant anymore or 
replaced with new experiences. Thus, the question to be asked is, how could these implicit forgetting 
mechanisms be made explicit and thus intentionally usable? To answer the question, it first has to be 
clarified what explicit means with regard to knowledge. In VDI 5610 (VDI, 2009) knowledge is defined 
as explicit, if it is formalizable in language or script and so it can be communicated. In companies, it is 
usually hold in data and knowledge bases. So, the question might even be whether and how to get those 
data- and knowledgebases to forget explicit knowledge intentionally. But, if knowledge is an important 
resource for companies, why should it be forgotten? The reuse of product and process models during a 
product development process leads to considerable saving of cost and time (Albers et al., 2015). As a 
consequence, the company databases grow bigger while storing the documentation of closed development 
projects. Suppose there is a new product development task and particular knowledge of these previously 
completed projects might be reused, the developers first have to filter the relevant elements from the large 
amount of contents and reject the irrelevant pieces. However, most data and knowledge bases are designed 
to provide comprehensive knowledge, thus the developers use the described implicit forgetting 
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mechanisms unconsciously for filtering the contents. This analogously leads to the problem of 
overwhelmed memory as described afore. The knowledge reuse might be more efficient, if the naturally 
and implicitly used forgetting mechanisms can be applied in an intended way and are supported within 
methods and applications for product development. This supports developers in distinguishing the relevant 
and irrelevant elements of product knowledge for the current development task. In the following, the 
method of supportive removal in knowledge bases is called Intentional Forgetting, because it is inspired 
by the described implicit and unconsciously used forgetting mechanisms. 
This contribution introduces a novel approach for supporting product development processes with 
operators for Intentional Forgetting (IF). For this, product models and descriptions have to be 
automatically mapped to ontologies, thus the supportive IF-mechanisms can be implemented by using 
the SPARQL update query language. The approach supports designers in the systematic reuse of existing 
design knowledge and thus opens new possibilities for knowledge-based engineering. The support by 
removing obsolete elements for reuse is demonstrated in a use case of a test-rig design process, which 
is characterized by a high level of knowledge reuse from an earlier test-rig. 

2. State of the art and background 
In the following, knowledge representations are introduced. Especially, the basic idea of the ontology-
based knowledge representation and its fundamental definitions combined with languages enabling to 
query and update the represented knowledge is shown, which are used to implement the IF-operators. 

2.1. Knowledge representation in product development 
The most common approaches to represent knowledge in product development are rule-based, object-
oriented and constraint-based methods. While rules merely consist of an "if-then-else"-structure, which 
connects facts in a procedural way, object-oriented systems structure objects in domains (Rude, 1998). For 
technical issues, constraints are often used, because they can represent restrictions or relations between 
objects (Rude, 1998). For more complex circumstances with many different relations, these simple 
representations are often not sufficient because dependencies cannot be mapped appropriately. Therefore, 
semantic networks, taxonomies and especially ontologies are more appropriate. A taxonomy structures 
terms hierarchically in a class-subclass-system, whereas semantic networks have the highest semantic 
integration of relations between objects (Kienreich and Strohmaier, 2006). An ontology possesses all these 
qualities and constitutes a powerful way to represent general knowledge. A well-known formal definition 
comes from Gruber (1993), who defines an ontology as an explicit specification of a (shared) 
conceptualization. Explicit is related to the explicitly defined concepts and relations. Shared 
conceptualization refers to the fact that the represented knowledge is agreed upon by the respective group. 
In practice, ontologies are usually formalized in the Web Ontology Language (OWL), which is based on 
description logics (Baader et al., 2017) and developed by the World Wide Web Consortium (W3C), an 
international community that standardises web technologies. Knowledge represented in description logics 
is usually divided into a TBox and an ABox. The TBox contains the terminological knowledge and consists 
of axioms. These axioms represent knowledge in the form of classes and binary relations that connect 
these classes (e.g. Figure 2 in Section 3.2). The ABox contains assertions about individuals and describes 
to which classes these individuals belong to and how they are connected via relations. A TBox axiom can 
be written as “gear_unit hasPart some shaft”, where gear_unit and shaft are the classes and hasPart is 
a relation between them. An ABox axiom is “08.100 hasPart 08.100.001.001”, where 08.100 is an 
assembly name and denotes an individual of the type gear_unit and 08.100.001.001 is a component name 
and is defined as an individual of the class shaft. The identification numbers are used to identify the certain 
components. Ontologies represent not only explicitly stated knowledge, but also knowledge which can be 
inferred from the stated knowledge. Thus, ontological knowledge bases have a larger content than only 
the stated input. This inferred knowledge is also taken into account in the IF-operators (Section 3.3). 

2.2. Query OWL ontologies 
Once knowledge is represented, it is important to have the possibility to access the elements of the 
ontological knowledge base. The SPARQL-1.1 language (Seaborne and Harris, 2013) was developed to 
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meet these requirements by providing the possibility to query OWL ontologies. The following SPARQL 
query can be used to determine everything which is a part of a gear unit. 

{ :
: }

SELECT ?Y
WHERE ?X a .

?X ?Y.
gear_unit
hasPart

 

In this query ?X and ?Y are variables, which are bound to individuals occurring in the ontology. This 
binding is carried out in a way such that the condition specified in the WHERE clause is fulfilled. More 
specifically, ?X is bound to some individual i1 belonging to class gear_unit and ?Y is bound to some 
individual i2, which is connected to i1 via the hasPart relation. The WHERE clause of the query 
determines all possible candidates for i1 and i2. The SELECT clause then presents all possible bindings 
for ?Y as result. Besides accessing the information in the ontology, another challenge in the daily use of 
ontologies is dynamic knowledge. Usually, the represented knowledge is not static but subject to 
frequent changes and even the development of an ontology can be seen as an evolutionary process. For 
example, in product development, the documentation of existing products is often reused and adapted 
to new products. This illustrates the need for dynamics in knowledge bases in the area of product 
development. To meet the requirements for dynamics, the SPARQL update language (Gearon et al., 
2013) was developed. With the help of SPARQL update queries, outdated knowledge can be deleted 
and new contents can be inserted into an ontology. The following query can be used to replace all feather 
keys which are part of a module by splined shafts: 

{ : }
{ : }
{ :

:
: }

DELETE ?Y a
INSERT ?Y a
WHERE ?X a .

?X ?Y.
?Y a

feather_key
splined_shaft
module

feather_key
hasPart

 

In general, there might be several ways to specify the result of such a SPARQL update query. With the 
help of different semantics for SPARQL update, it can be specified which of these possible outcomes 
represents the desired result for the application at hand. This paper sticks to the semantics introduced by 
Schon and Staab (2017) and furthermore introduces some new semantics suitable for the application in 
product development. 

3. Intentional Forgetting in ontology-based product representations 
In this section, an approach for an ontology-based product representation is introduced with focus on 
CAD data. Initially, the workflow and methods applied are presented. Then an automated approach for 
extraction of CAD representations into an ontology-based representation in Protégé 
(https://protege.stanford.edu/) is shown, which enables the subsequently presented IF-mechanisms. 
Moreover, the IF-mechanisms, which are of interest for product development, are introduced and 
exemplarily implemented by using SPARQL update queries. 

3.1. Workflow and methods applied 
For the assistance by IF-mechanisms in product development, essential IF-operators are conceptualized 
and implemented in an ontological knowledge base system. These operators are based on the analyses 
of forgetting mechanisms, which are already implicitly used by developers to identify relevant elements 
from previous development processes. These unconsciously and mentally used mechanisms are called 
IF-mechanisms, as described afore. However, IF-mechanisms are not yet supported by procedure 
models or IT systems. With the focus on automotive and test-rig engineering, the example in Figure 1 
shows the product development process of a gear unit according to Pahl and Beitz (1996). As shown in 
Figure 1, not only CAD models are considered in these analyses. All development phases and their 
resulting product descriptions (in any degree of concretization) are taken into account: starting with the 
requirements (product planning) and derived functional structures and principal solution (conceptual 
design) up to the resulting CAD models (embodiment design) and manufacturing documents (detail 
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design). Thus, the entire development process can be supported by IF. As shown in Figure 1, these 
informal product and process descriptions have to be transferred into formal ontology-based models to 
provide a consistent linkage between the single work results of the process. To efficiently develop these 
ontologies, procedures have to be established to automatically generate them from available databases 
in product development, for instance from CAD models. Finally, a dynamic ontological knowledge base 
is set up and IF-operators are integrated in the system, which support developers with an efficient reuse 
of product and process models by the removal of obsolete elements. (Kestel et al., 2017) 

 
Figure 1. Supporting reuse by IF-operators according to Kestel et al. (2017) 

3.2. Ontology-based approach for product representations 
In the following, the focus is on the embodiment design phase. Classes, relations and instances, which 
were introduced in Section 2.1, are shown exemplarily below for a shaft from a gear unit (Figure 2). In 
the ontology, the classes represent a structure, which is similar to the model tree in a CAD-environment. 
Thus, there are the classes assembly, part and also standard_part, like a feather key. Other parts, like 
shafts, can be mapped as subclasses of part, thus a specific shaft, in this case the shaft 08.100.001.001, 
can be implemented as an individual of the type shaft (Figure 2). Binary relations are set between the 
classes, e.g. hasPart to express that an assembly has some parts. Moreover, relations can be set in both 
direction, like isPartOf in Figure 2, which is the inverse of hasPart and can analogously be set for the 
other hasPart-relation (For reasons of clarity, however, this has been dispensed with). Sometimes, it 
can be helpful to include a class for component_geometry, for instance the special keyway associated 
with the feather key can be related to the shaft. 

 
Figure 2. Example for an ontology-based product representation with pre-defined 

and generated (dashed boxes) classes, individuals and relations 

A procedure to automatically derive ontologies from a CAD model uses reference lists and bills of 
material (BOM) exported from the CAD system, thus the manually effort is reduced. This procedure is 
implemented in the environment of MathWorks MATLAB and PTC Creo Parametric. An excerpt of an 
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exported CAD reference list is shown in Figure 3A. These reference lists are incrementally generated 
for every component in a CAD model. Each list includes the currently considered object (e.g. a part) as 
well as all assemblies and parts attached to this object. Indentations in the reference lists represent 
assembly hierarchies. In the given example, an assembly and its layshaft component (see “Children 
List” in Figure 3A) are attached to a feather key (DIN6775-A-10X8X22.PRT). 

 
Figure 3. Automated generation of ontologies 

To automatically extract this product information, regular expressions are applied. Regular expressions 
map patterns and structures recurring in reference lists by strings and operators. These expressions can 
be applied to detect relevant sections in a reference list and to extract essential product information. A 
simplified example for such a regular expression is shown in Figure 3B. By this expression, the layshaft 
component is identified in the reference list. The first part “(?<=  .*)” searches for indentations in the 
reference list to identify hierarchical relationships, for instance all components assigned to the given 
assembly. The last part of the regular expression “(?=\.PRT)” uses the endings of the list entries to 
check whether the considered entry is a component, an assembly or a geometric feature. The name of 
the shaft is not completely specified in the given regular expression: the expression “\w+” also accepts 
prefixes ahead of this term, thus it is recognized, if "shaft" is contained somehow in the name. With this 
method a strict naming convention is not required, just the name of a part has to be used in some way. 
All surrounding strings identified by the bracketed expressions are not extracted, such as the ending 
“.PRT” with “(?=\.PRT)”. The bracketed expressions are used to identify parts and their hierarchical 
relationships. Subsequently, strings extracted by the regular expressions are automatically transferred 
into OWL (Figure 3D). These can be processed in Protégé, and can be visualized like in Figure 2 (dashed 
boxes). The extracted strings are used directly for the definition of subclasses. In the case of prefixes or 
suffixes, additional subclasses are defined. In the given example, not only shaft is defined as a subclass 
of part, but also layshaft as a subclass of shaft is extracted (see Figure 2). To automatically assign an 
individual to these subclasses, corresponding component names in the BOM are used. In the BOM in 
Figure 3C, the component name of the layshaft (08.100.001.001) is used to create an individual for this 
subclass (compare ontology in Figure 2 and BOM in Figure 3C). An example of how the resulting OWL-
structures looks like is also given in Figure 3D. Furthermore, a layshaft connection is defined in this 
example (Figure 3D, "08…01-E01.01") and corresponding parts are assigned to this connection, like 
the feather key or attached layshaft. Since a direct definition of regular expressions for every subclass 
is not efficient, the implemented interface is based on a pre-defined subclass list, as shown in Figure 3E. 
In the subclass lists, the first column includes terms used to identify the subclasses. These terms are 
inserted in the given regular expression in Figure 3B. As mentioned before, the given terms only have 
to be partly included in the reference lists and prefixes or suffixes are also identified. Although shaft is 
given in the subclass list, the layshaft is also identified and set as subclass in the ontology (Figure 2). 
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Regular expressions can be used in the subclass lists, for instance to identify feather keys with different 
dimensional parameters (and according names) by only one expression (“DIN6884-A-\d*” in Figure 
3E). The information extraction is based on the typical naming convention for standard parts used in 
standards tables. The second column of the subclass list includes corresponding superclasses and the 
third column specifies a representation name for a subclass in the resulting ontology. Even if no 
appropriate entries are found in the subclass list, components are identified by regular expressions, 
defined as subclasses and assigned to basic classes, e.g. to part or assembly. Thus, additional subclass 
lists are required to prohibit undesired classification, as shown in the constrained subclass list in Figure 
3F. Parts that are only assigned to basic classes can be further specified subsequently by knowledge 
engineers. Thus, the system learns the expressions of different CAD users and unites them in an ontology 
that is understandable to all product developers. 

3.3. Intentional Forgetting with SPARQL update 
Five mechanisms are defined to efficiently support the reuse of knowledge in product development 
processes. The first mechanism is the forgetting of inferred knowledge. Within ontology-based 
representations, implicit knowledge can be inferred from explicitly stated knowledge. In general, there 
can be more than one way to infer a certain piece of knowledge from an ontology. Moreover, there can 
be more than one way to delete some piece of knowledge from an ontology. An example from the gear 
unit assembly (Figure 2) might be a TBox consisting of the single axiom "(part and standard_part) 
SubClassOf component_geometry", stating that every individual that belongs to classes part and 
standard_part, also belongs to class component_geometry. This axiom is defined, because the 
geometry is specified in DIN standards for standard parts and thus the geometry defines the part. Assume 
the ABox contains the following axioms about the individual of the feather key: 

(1) part (DIN6885-A-10x8x22) 
(2) standard_part (DIN6885-A-10x8x22) 
(3) component_geometry (DIN6885-A-10x8x22) 

These axioms state that individual DIN6885-A-10x8x22 belongs to class part (1), standard_part (2) 
and component_geometry (3). Assume that axiom (3) is supposed to be forgotten, because a new 
geometrical element has to be defined. Deleting axiom (3) is not sufficient, since it still can be inferred 
from axiom (1) and axiom (2) together with the axiom in the TBox. This illustrates that deleting inferred 
knowledge is more challenging than just deleting a database entry (Kestel et al., 2017). More 
specifically, (3) has to be deleted together with all its causes. This can be accomplished in the following 
three ways: 

deleting (3) and (1), 
deleting (3) and (2) or  
deleting (3), (1) and (2). 

All three options prevent axiom (3) from being inferred. Different semantics for SPARQL update are 
used to choose one of these options. See Schon and Staab (2017) for an overview of these semantics. 
In many cases, forgetting a single model element requires that connected elements in one phase or even 
beyond the phases have to be forgotten, too (Kestel et al., 2017). This kind of forgetting mechanism is 
denoted by cascading forgetting. In product development, it takes into account that a change of a 
requirement is potentially related to functions and even the parts and assemblies of a product. For 
instance, the requirement of the transmission of a unilateral torque has changed into an alternating 
torque, the feather key connection in the example of the gear unit has to be changed to a splined shaft 
connection. This also affects the feather key (part) and even the feather keyway (geometry), which also 
has to be removed. Furthermore, it could cause a change in the axial locking elements, or even the 
shafts diameter. Some aspects of this cascading forgetting can be accomplished by special semantics 
for SPARQL update. A prerequisite for implementing cascading forgetting is that certain 
metaproperties of the classes in the ontology are specified. Examples for these metaproperties are 
rigidity and dependency, which were introduced in the OntoClean methodology (Guarino and Welty, 
2009). A class is called rigid, if it is essential to all its individuals. For instance, the class person is 
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rigid, since one cannot stop being a person. In contrast to that, the class student is not rigid, because 
one can start or stop being a student at any time. The definition of the set of all rigid classes of an 
ontology can be exploited to model a cascading forgetting. If such a deletion occurs, this indicates that 
all information about the individual is supposed to be removed from the ontology, resulting into the 
deletion of all axioms containing this individual. Another metaproperty that can be used to influence 
certain aspects of cascading forgetting is the dependency metaproperty. Assume that in an ontology 
the class part depends on class assembly via the relation isPartOf, which is inverse to hasPart (Figure 
2). Intuitively speaking, this means that for every individual belonging to class part there has to be one 
in class assembly which is connected via the isPartOf relation. Furthermore, the ABox of this ontology 
contains the following axioms: 

(1) part (p1) 
(2) assembly (a1) 
(3) hasPart (a1, p1) 

Where axiom (1) denotes that individual p1 belongs to class part and axiom (3) describes that a1 is 
connected to p1 via relation hasPart. This implies, that individual p1 is connected to individual a1 via 
relation isPartOf. In addition, assume that there is no other individual, which is connected to p1 via the 
hasPart relation. Due to some design choices, the product developer decides to remove the assembly 
a1 (2). This removes the only individual, which is reachable from p1 via the isPartOf relation. Due to 
the open-world semantics of description logics, removing axiom (2) does not affect the class affiliation 
of individual p1. In contrast to that, the user intuitively expects axiom (1) and (3) to be deleted from 
the ABox as well, which corresponds to cascading forgetting. Such a cascading behaviour can be 
accomplished by using specific semantics for SPARQL update queries. These so-called 
OntoClean-guided semantics extend the query-driven semantics introduced by Schon and Staab (2017) 
by cascading behaviour. In addition, there are other forgetting mechanisms, which are desirable for the 
area of product development. A representation of blank space stands for obsolete elements, which are 
not completely removed, but rather replaced by a blank space, that facilitates the substitution with a 
new element (Kestel et al., 2017). In the example of a gear unit, the forgetting of all elements of the 
feather key connection would initially lead to the unfulfilled function "transmitting torque", because 
there is no connection anymore, which can comply with the requirement. In consequence, there has to 
be an expressive representation for this blank space, in order to ensure that the function is not deleted 
through IF. Furthermore, within complex product structures, it can be helpful to focus on a special part 
of interest. Therefore, the parts that are currently obsolete have to be hidden by temporary forgetting. 
This mechanism leads to a prioritization of the elements within certain the development steps (Kestel 
et al., 2017). Due to transparency and traceability, the mechanism remembering of forgetting takes care 
that additional information about the forgetting process is available like who performed for which 
reasons the forgetting operation at which time. This information is valuable to achieve reversibility of 
performed forgetting operations (Kestel et al., 2017). Also this mechanism can be exploited to 
document decisions and the reasons behind or moreover design alternatives in addition to the class 
hierarchy, for example, through annotations. Representation of blank spaces, temporary forgetting as 
well as mechanisms to remember forgotten aspects have not been implemented yet and are subject of 
current research. 

4. Use case: Development process of a cam/bucket tappet component test-rig 
The introduced approaches of ontology-based knowledge representation, automated extraction of CAD 
data into OWL and the IF-mechanisms are now exemplarily applied to the product development process 
of a test-rig, which is used for studying the wear behaviour and lubrication conditions of the cam/tappet 
contact in combustion engines. The test-rig is suitable as a demonstrator, since its product development 
process is highly based on reuse and adaptation from an earlier test-rig development, thus the situations 
of appropriate support with IF can be analysed. In the following, the background of the test-rig is 
presented. Subsequently, a basic structure for an ontology-based representation in product development 
is shown, which can be used for the automated extraction of CAD data. Finally, the IF-mechanism 
cascading forgetting is exemplarily implemented with SPARQL update. 
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4.1. Experimental investigations on the friction and wear behaviour of the cam/tappet 
contact in the valve train 

Growing demands for increasing power density and reliability of technical systems combined with 
dwindling resources, rising environmental awareness and stricter legislative frameworks lead to the 
necessity for more efficient machine and engine elements. Therefore, the reduction of friction and wear 
in highly stressed tribological contacts of combustion engines is vital. Besides crankshaft drive and 
piston assembly, the cam/tappet contact of the valve train represents one of the key systems contributing 
to frictional losses, especially at lower crankshaft speeds (Koch and Geiger, 1997). The valve train is 
responsible for the control of air and fuel flow into and out of the cylinders. The tribological system of 
the cam/bucket tappet contact is shown schematically in Figure 4A. 

 
Figure 4. Tribological system of the cam/bucket tappet contact (A), design of the  

               cam/bucket tappet friction (B, C) and wear (D, E) component test-rigs 

Despite advantages of bucket tappets compared to roller tappets with regard to design and production 
costs or lightweight design aspects, there is still a need for improvement of bucket tappets with respect 
to frictional behaviour (Gutzmer, 2007). Latter can be achieved by the means of surface modification, 
such as microtexturing (Tremmel et al., 2017) or the use of tribological coatings (Dobrenizki et al., 
2016). While a simulation based approach (Marian et al., 2017a) may help for a better understanding of 
local effects within the contact and shortening the development time, an experimental validation is 
mandatory. In general, tribological testing can range from complete technical systems under real 
operating conditions to lab-based tests with simplified test specimens. Component test-rigs allow a 
mechanism-oriented and reproducible study of numerous parameter combinations under fixed 
constraints in a time and cost efficient way while ensuring transferability into industrial application 
(Czichos and Habig, 2015). For these reasons, a one cam/one bucket tappet component test-rig with the 
aim of studying friction behaviour was developed (Figure 4B, C). Later it was complemented by a 
second, modified test-rig in order to study wear behaviour (Figure 4D, E). 

4.2. Development of the cam/bucket tappet component test-rigs 
The cam/tappet friction component test-rig, which was designed systematically following Pahl and Beitz 
(1996), is presented and documented in detail by Schulz (2013). Therefore, at first requirements were 
defined in the planning phase. In the conceptual phase, the essential functions to be fulfilled by the test-
rig were compiled by abstraction. By means of functional factorization, sub-functions were derived and 
solution principles were found. A solution concept was generated, defined and then completed into a 
final design with modular architecture by combining and evaluating these principles. The overall design 
of the test-rig is divided into the modules test-chamber, basic frame, drive-unit, hydraulics and control-
unit (Figure 4B). In the test-chamber, a single cam is in contact with a single bucket tappet. A cut through 
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the test-chamber is shown in Figure 4C. The cam is symmetrical with a cone seat on both sides and held 
by two shafts. The test-unit, in which tappet and valve are moving linearly, is mounted elastically at the 
bottom and supported by four crosswise arranged, preloaded piezoelectric force sensors at the top. Thus, 
the friction force within the contact can be determined. A lubricant unit with a temperature-controlled 
reservoir realizes the lubrication of the contact.  
However, the complex measuring systems are not suitable for long-term tests due to complexity, 
sensitivity and high setup and maintenance costs. Nevertheless, long-term wear and fatigue of surface 
modified bucket tappets determine component lifetime and consequently need to be studied (Marian et 
al., 2017b). For that reason, a separate cam/tappet component test-rig for time-efficient wear testing was 
realized, see Figure 4D. In general, the development was also based on the systematic approaches to 
design (Pahl and Beitz, 1996). However, the results of previously completed development phases were 
taken into account and adapted. In the first step, the existing design structure was analysed and selected 
sub-functions and solution principles were modified to the changed requirements while others were 
preserved. In the following steps, the modifications were further elaborated. This especially applies for 
the simplified test-setup and reduced measurement systems. A cut through the test-chamber is shown in 
Figure 4E. For example, the friction force is no longer detected as a measurement value using 
piezoelectric force sensors. Instead, the friction behaviour is derived from the theoretical moment of 
resistance and the applied torque, which can be detected by a high-resolution torquemeter. This in turn 
allows a different, simplified design of the test-unit as certain features were no longer necessary, also 
enabling an easier setup and preparation process. 

4.3. Ontology-based representation of the test-rig 
Especially because of the fact that some features of the test-unit became obsolete to the new 
requirements for testing wear behaviour, the test rig is well-suited for finding and evaluating the 
introduced IF-mechanisms (Section 3.3). For this, the work results of the development process are pre-
defined as a class system (Figure 5 on the left side). The relations follow the logical procedure of such 
processes. Therefore, functions are derived from requirements, while they are fulfilled by solution 
principles. These are realized by the assemblies, subassemblies and parts of the design phase. This 
structure is independent from the test-rig and therefore can be regarded as a basic structure. In the section 
of the test-rig ontology, shown in Figure 5, the classes and individuals at the bottom right were extracted 
automatically (Figure 5, dashed boxes). 

 
Figure 5. Example ontology with automated-extracted elements of the test-rig 
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Within the extraction not just subclasses of the pre-defined classes are added. The extracted class shaft 
is a subclass of part, while shaft_tension is a subclass of shaft and is also extracted automatically. This 
includes the possibility to define arbitrarily detailed class systems for specific use cases on the basic 
structure automatically. The individuals in Figure 5 are extracted as shown in Section 3.2. For instance, 
the individual AS-TSPS-200 is of the type test-setup and therefore a subassembly. The individual for 
the standard part washer NL-10-SPSS is part of the test-setup of the test-rig, so the relation hasPart is 
set between the two individuals (Figure 5). The automated extraction is limited to the CAD 
representations of a product for now, so the early phases have to be integrated manually. For instance, 
the solution principle piezoelectric_sensors, which fulfils the subfunction measuring_friction_force, 
is realized by the individual AS-TSPS-200-13, which is of the type piezoelectric_unit (Figure 5). 
However, it is essential to connect the work results of the phases for supporting the reuse of development 
processes, thus impacts of changes, can be made traceable. The ontology provides a powerful way to 
establish such relations even the displayed contents are hold in different formats. 

4.4. Testing queries in SPARQL update 
A cascading forgetting behaviour can be achieved by exploiting certain metaproperties like rigidity and 
dependency (Section 3.3). Among others, the classes function, subfunction and solution_principle 
(Figure 5), can be seen as rigid. In addition, the class subfunction depends on class solution_principle 
with respect to the relation isFulfilledBy (Figure 5) since for each individual of a subfunction there has 
to be also one of solution_principle to fulfil the subfunction. Similarly, the class subassembly depends 
on class solution_principle. The ABox for the test-rig contains, inter alia, the following axioms: 

(1) subassembly (AS-TSPS-200-13) 
(2) solution_principle (piezoelectric_sensors) 
(3) subfunction (measuring_friction_forces) 
(4) function (measuring_forces) 
(5) givesSupportTo (measuring_friction_forces, measuring_forces) 
(6) isFulfilledBy (measuring_friction_forces, piezoelectric_sensors) 
(7) isRealizedBy (piezoelectric_sensors, AS-TSPS-200-13) 

There are no other individuals belonging to class solution_principle, which are connected to 
measuring_friction_forces via the relation isFulfilledBy. Now (2) is forgotten because the 
measurement with piezoelectric sensors is obsolete to the new test-rig. This is accomplished by the 
following SPARQL update query with an empty WHERE clause: 

{ : }
{ }

DELETE a
WHERE

piezoelectric_sensors solution_principle

 

The OntoClean-guided semantics introduced in Section 3.3 lead to the following result: The rigidity of 
class solution_principle results in the deletion of all axioms from the ABox containing individual 
piezoelectric_sensors, meaning that axioms (6) and (7) are also removed. Furthermore, axiom (3), is 
deleted, since the class subfunction depends on the solution_principle and there is no individual 
belonging to class solution_principle left, as mentioned afore. Furthermore, the deletion of (3) together 
with the fact that subfunction also constitutes a rigid class leads to the deletion of all axioms containing 
the individual measuring_friction_forces. This causes axiom (5) to be deleted. In addition, axiom (1) 
is deleted, since the subassembly depends on a solution_principle with respect to the relation 
isRealizedBy. As illustrated, the OntoClean-guided semantics of SPARQL update lead to a cascading 
behaviour of forgetting: The deletion of axiom (2) triggers the deletion of other related axioms. Please 
note that due to the open-world semantics of description logics, the deletion of axiom (1), (3), (5), (6) 
and (7) does not logically follow from the deletion of (2). This cascading behaviour can only be achieved 
by the OntoClean-guided semantics of SPARQL update, which is used to implement this IF-mechanism. 
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4.5. Discussion 
Based on the obtained results, it can be seen that the automated ontology generation from existing CAD 
models allowed an appropriate representation of the embodiment design phase of the test-rig. The 
manually effort was restricted to the implementation of the basic structure, thus existing CAD models 
can be added easily to this pre-defined class system. To achieve a holistic support of the product 
development process, automated solutions for the integration of early phases are part of future research. 
The integration of the different work results is one step, another challenge is to automatically relate the 
development phases, which is also part of current and future research. Moreover, it was shown, that the 
IF-mechanism cascading forgetting led to the deletion of further axioms. The deletion of the 
piezoelectric sensors, which was declared as a solution principle, affected the concerning subfunction 
and even the subassembly piezoelectric unit. In consequence, all elements, which are connected to the 
obsolete solution principle, were removed, thus white spaces for new ideas are available. This provides 
a great support for the reuse of the test-rig-model in the new development task, because with the support 
of the IF-operator just one removal causes the forgetting of all of the obsolete elements. Thus, the time-
consuming and error-prone manual searching becomes redundant and provides more time for creative 
and generating development tasks. 

5. Conclusion and future work 
While the earlier phases have to be implemented manually within the ontology, a reliable approach was 
shown to automate the transfer of CAD data into OWL. However, the high effort of the manually 
implemented parts in ontologies requires automated solutions for the earlier phases. A software interface 
between the requirements management solution DOORS and the OWL representation can automate the 
inclusion of requirements in the representation and is part of future research. The future work focuses 
on an approach called Enterprise Information Integration (EII), which enables storing and synchronizing 
data and information held in heterogeneous formats. Moreover, another test-rig is currently developed 
and manufactured. For latter, the original tribological system is further abstracted into a model ring/disk 
tappet system in order to gain further insights of fundamental effects and phenomena. Again, the 
development process of the model test-rig is based on reuse and adaptation from the earlier developed 
test-rigs. Therefore, IF-mechanisms can also be applied and thus further evaluated. Beside this, the 
implementation of further introduced IF-mechanisms is the subject of current research. 
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