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Abstract 

Biotechnologies could promote healthier lives through advancements such as complex multi-level 
muscle tissues. Here, cognitive processes among mechanics experts, physiology experts, and novices 
were investigated to determine what types of knowledge and training are beneficial. An initial 
hypothesis proposed that domain knowledge is not sufficient for predicting how system redesign 
affects performance, which was supported by all populations performing poorly on muscle redesign 
questions; mechanics experts outperformed other populations on force-related questions. A second 
hypothesis suggested that learning with multi-level design interfaces could aid participants in system 
redesign, which was supported by all populations performing well after training. A final hypothesis 
proposed that experts would excel in describing redesign effects, which was supported by expert 
populations describing more higher-level effects than novices, and the physiology experts suggesting 
the most effects on patient health. This study lays the foundation for investigating medicine and 
engineering in design, which has great potential for improving patient health with novel products. 
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1 INTRODUCTION AND MOTIVATION 

 Emerging intersections in engineering and medicine have great potential for developing novel 
products for improved patient health (Korin et al., 2012).  In particular, additive manufacturing 
(Giannatsis and Dedoussis, 2009) approaches could enable the production of tailored treatments for 
personalized medicine (Hamburg and Collins, 2010), such as biologically-based nanomedicine or 
bioprinted organs (Mironov et al., 2011). The design space for products that utilize biological 
components is complex and challenging, as biological systems often have many layers of non-obvious 
emergent behaviors that are difficult for humans to understand and predict (Egan et al., 2013).  In this 
paper, multi-level muscle design is utilized as an example case to determine how designers can 
effectively understand, learn, and reason about multi-leveled design space, with empirical support 
from cognitive studies. A multi-level design graphical user interface (GUI) was created to investigate 
participant learning of system relationships, based on past findings that domain knowledge and inter-
level causal reasoning improve human searches of biological systems with emergent behavior (Egan et 
al., 2015a).  Findings from this study seek to promote effective ways for designers to approach 
complex multi-level systems, which may enable many new products and exciting opportunities at the 
intersections of engineering and medicine. 
 Multi-level muscle systems were chosen as a representative system because they exhibit 
characteristics general to complex biological systems, such as having many parts and scales with 
layered emergent behaviors (Egan et al., 2013).  The layered emergent behaviors are a result of a 
muscle’s hierarchical organization, where discrete levels of organized structures (Fig. 1) interact 
across scales to power a single muscle contraction. 
 

 

Figure 1. Multi-level muscle organization, from nano- (myosin) to macroscales (muscle) 

 In Figure 1, one complete muscle (highest level or organization at the macroscale), is sub-divided 
by fibers situated in-parallel (second highest level) that run longitudinally the entire length of the 
muscle.  Each fiber consists of in-series sarcomeres (second lowest level) that each contain interlaced 
myosin and actin filaments (lowest level).  Myosins are motor proteins that aggregate to form thick 
filaments, such that all myosins are anchored together and have heads that interact with actin 
filaments.  At the filament level, each individual myosin autonomously and stochastically attaches to 
an actin filament, exerts force that translates the filament, and then detaches. Actin filaments are 
anchored to disc-like structures that connect each of the in-series sarcomeres.  Through the collective 
stochastic interactions of myosin and actin within a sarcomere, sarcomeres begin contracting, and 
through the collective contractions of many sarcomeres, the entire muscle contracts.  
 Although the emergent layers in muscles may seem highly redundant—a muscle contracts 
because it’s made up of sub-units that contract—myosins operate on fundamentally different 
principles.  Myosins do not contract; instead, they cycle.  It is only through their collective behaviors 
that a qualitatively distinct behavior of contraction emerges. Past cognitive studies have demonstrated 
that emergent systems with qualitatively distinct behaviors are challenging to understand, but 
graphical user interface (GUI) aids can aid in human understanding of such systems (Chi et al., 2012).  
However, few studies have investigated how the understanding of multi-level emergent systems 
relates to a designer’s ability to configure them effectively (Egan et al., 2015a), which motivates the 
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need for testing what types of understanding translate to effective complex systems design, and how 
GUIs can aid in bolstering beneficial forms of understanding.   
 Cognitive studies have demonstrated that a person’s understanding of complex systems differs in 
biological domains depending on past expertise and training (Hmelo-Silver et al., 2007), which could 
affect their ability to design.  For instance, in aquarium systems, experts typically have more 
knowledge of structures and behaviors than novices, which leads to improved understanding and 
reasoning about interactions within a system.  Similar differences in structural and behavioral 
knowledge were demonstrated among novices and experts for physiological systems related to 
breathing.  Generalist experts, such as academics, were shown to categorize their knowledge 
differently than other experts, such as hobbyists, which suggests that different trainings could also 
influence effective design reasoning.   
 However, these studies did not test whether increased structural and behavioral knowledge was 
sufficient for correctly reasoning about behavioral changes in a system as it is redesigned, which 
extends beyond understanding how systems operate or react to stimuli.  Findings from our past myosin 
GUI studies have suggested that it is difficult to relate how redesigning specific system components 
affects overall system behavior, even after solving multiple design problems where understanding of 
the problem space is gained (Egan et al., 2015b).  These findings suggest that although knowledge of 
structures and behaviors are necessary for designing a system, there are additional skills or knowledge 
necessary in order to effectively design a system.  These findings motivate our first hypothesis: 1) 
Knowledge of structures and behaviors in a system are not sufficient for human-based predictions of 
how a system’s multi-level behaviors are altered during redesign. 
 Development of a second hypothesis (assuming the first holds true) is now motivated by the need 
to discover what types of knowledge are teachable and improve human-based design of complex 
biological systems.  Traditionally in medical domains, animations have proven successful in teaching 
students about complex functioning in physiological systems (Van Merriënboer and Sweller, 2010).  A 
key consideration for effective teaching with animations is the reduction of cognitive load that 
impedes learning.  An optimal cognitive load is achievable through chunking information and 
presenting them to a user through a series of small lessons, while also increasing the effort a 
participant exerts during learning that contributes to their understanding.   
 GUIs can also teach information beyond animations, through enabling human-interaction with 
virtual environments.  Past cognitive studies have demonstrated that GUI environments where users 
are presented behaviors at two simultaneous system levels can improve their understanding of 
emergent system behaviors (Chi et al., 2012).  These studies were conducted on diffusion systems that 
are built from two types of molecules, which are simpler models than multi-level muscle system 
models.  Despite participants learning during the study, many participants were resistant to learning 
and fully understanding the emergent system behavior, which suggests that a single GUI approach for 
teaching muscles may impose too much complexity and cognitive load on a human learner.  
Therefore, an effective learning approach for multi-level biological domains could utilize a 
combination of animations and GUIs to teach how key structures and behaviors influence system 
functioning across levels.  These considerations motivate our second hypothesis: 2) Learning sessions 
bolstered with a multi-level design GUI will improve participants’ capability for predicting altered 
behaviors across scales during redesign. 
 A final consideration linked to successful design of complex biosystems suggests that designers 
should also reason about further effects of redesigning components of a system, since changes to one 
component in a complex system can influence the behaviors of components throughout the entire 
system.  For instance, nanoscale alterations in muscles can influence disease states in the body as a 
whole (Moore et al., 2012). Therefore designers must also anticipate how synthetic muscle designs 
could influence the entire human body. The ability to predict causal chains of behavior throughout a 
complex system often grows with expertise, in part because experts tend to sort mechanisms by causal 
categories while novices sort information by domain-based knowledge (Rottman et al., 2012).  
Therefore, we predict: 3) Increased expertise leads to an increased capacity for predicting how the 
redesign of a complex system’s subcomponents will influence system-wide functioning. 
 These hypotheses are testable through a cognitive study that includes novices, experts, and GUI 
training interventions.  Participants for this paper’s study included differently trained experts to enable 
testing how varied amounts/types of knowledge and reasoning skills influence design. This was 
achieved through inclusion of mechanics experts represented by mechanical engineering doctoral 
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students and physiology experts represented by medical students.  The novice group consisted of 
STEM (science, technology, engineering, and mathematics) undergraduates, which were just 
beginning their careers in learning reasoning skills and knowledge that are essential for both 
engineering and medical disciplines.  The choice of a multi-level muscle system ensured that it is 
familiar to all students at the macroscale, while likely being familiar only to physiology experts at the 
nanoscale.  The aim of the cognitive study was to reach new insights concerning the knowledge, skills, 
and training necessary for effective human-centered design of complex multi-level biological systems, 
which could lead to many novel products for improved healthcare. 

2 EXPERIMENTAL METHODOLOGY 

 The recruited participant groups included 12 STEM undergraduates that had completed no more 
than two years of undergraduate study in engineering, science and mathematics majors (novices), 11 
mechanical engineering doctoral students that had completed at least one year of graduate studies 
(mechanics experts), and 10 medical students that had completed at least one year of medical school 
(physiology experts). All participants were recruited from two different universities in the Northeast 
United States. Each participant in the cognitive study was individually interviewed by the same 
interviewer using a standardized script. All sessions were recorded with an audio device that enabled 
post-experimental assessment of participant answers by two independent graders (a doctoral student in 
mechanical engineering with experience in myosin modeling and cognitive studies, and a senior 
undergraduate with chemical/biomedical engineering majors on a pre-med track) that formed a 
consensus on each measurement.   
 
2.1 Cognitive Study Protocol 

 The cognitive study was divided into three primary phases, an initial phase for measuring prior 
participant domain knowledge, a second phase for assessing participating capabilities for predicting 
redesigned system behaviors for pre/post GUI support, and a final phase to determine participant 
capabilities in predicting system-wide effects when a subcomponent is redesigned.  
 The testing of participants’ baseline knowledge is essential for determining that the medical 
student population is representative of physiological expertise, and that the muscle system is 
unfamiliar to other participant populations at the nanoscale.  It was determined by asking the 
participant to describe the nanoscale proteins that power muscle contractions (to determine their 
knowledge of myosin and actin), and then the Figure 1 schematic was provided and further questions 
were asked (participants were allowed to keep this schematic throughout the entire study).  
Participants were asked to describe the interactions of components at the nanoscale (specifically the 
lowest level in Figure 1), and how this related to a complete muscle contraction.  Upon completion of 
their descriptions, participants were notified that muscles work by having myosins attach to actin 
filaments while utilizing energy if they had not described those interactions; no further information 
was provided to participants.  The reason for providing participants such knowledge is for testing the 
first hypothesis, which requires each participant to have knowledge of structures and behaviors in a 
system to determine if they aid in predicting effects on system behavior when redesigned. 
 The first hypothesis predicted that participants would perform poorly on redesign questions, and 
was tested through administration of such questions by showing participants a typical muscle and a 
muscle with an either increased or decreased cross-sectional area achieved by altering the number of 
fibers it contained.  Increased and decreased muscle area questions were evenly distributed among 
participants, and the version of the question a participant received initially was different from later 
post-tests after GUI training sessions.  Participants were asked to describe the effects on nanoscale and 
macroscale system behaviors, and measurements were collected to determine if participants could 
accurately predict the behavioral changes in muscle through structural and behavioral knowledge.   
 A training session for participants with animations and the multi-level GUI was the next protocol 
step, followed by a post-test of participants using the same muscle redesign question.  During the 
animations training portion, participants were shown an animation of a fast contracting nanoscale 
filament system and a slow contracting system. They were told that the slowly contracting system 
utilized less energy and generated more force than the fast contracting system, and that each myosin 
always utilized one ATP per cycle.  A print-out of the animation and provided information was given 
to each participant for the duration of the study to reduce the cognitive load required in their 
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remembering these details.  Participants were then guided through a learning session with the GUI that 
enabled users to alter myosin and muscle structures and receive output concerning force, velocity, and 
energy behaviors at both the nano and macroscale.  After these sessions, participants were asked the 
same redesign question using for the muscle redesign condition they did not receive for their pre-
testing questions.  Comparison of pre/post-test results enables a comparison of whether the training 
sessions improved users’ capabilities in predicting consequences on system behavior through redesign. 
 The last phase of the cognitive study seeks to determine whether expert participants are better 
able to predict outcomes of system-wide effects that emerge when lower level components of a system 
are redesigned, which is the focus of the final hypotheses.  In this phase, participants were provided a 
schematic of a typical heart and an atypical heart with enlarged muscle tissue.  They were asked to 
describe the effects that would result in a patient having the atypical heart in comparison to the typical 
heart, if everything else about the patient remained constant.  The number of effects described by 
participants at higher levels are indicative of their ability to predict how redesign of system 
subcomponents affects entire system functioning. 
 
2.2 Underlying Mathematical Multi-level Model of Muscle 

 The model in the GUI mathematically predicts nanoscale and macroscale outputs based on user 
inputs by averaging the behavior of myosins and determining their collective influences on macroscale 
functioning.  At the nanoscale, the model is an extension of well-known biophysical models (Howard, 
2001) that were used for design cases in past endeavors (Egan et al., 2013) to predict system behavior 
as myosin structures are altered.  For this study’s model, only lever arm length and myosin binding 
affinity design variables are controllable by a user, and have unique effects: 1) Lever arm length has a 
positive correlation with myosin size and filament velocity and 2) Binding affinity has a positive 
correlation with filament velocity and myosin energy consumption.    
 The model was extended to the macroscale by considering the contributions of all myosins in a 
muscle that is subject to an external force stimulus, and its physiological structure (Randall, 2001). 
Two muscle design inputs were included, the muscle area (through altering the number of in-parallel 
muscle fibers) and length (through altering the number of in-series sarcomeres).  Changes to each 
design input have a unique effect: 1) An increase in muscle area is positively correlated with muscle 
velocity and energy use, and negatively correlated with individual myosin force output, although total 
force output of the muscle remains constant (since more myosins fit in a larger muscle, but the 
macroscopic stimuli is the same). 2) An increase in muscle length has a constant macroscopic force, a 
positive correlation with muscle velocity (since there are more sarcomeres in series), a positive 
correlation with muscle energy (since there are more total myosins) and constant behavior for myosins 
(since all additional in-series units added to the muscle result in no net change in muscle force or how 
force is distributed among myosins).   
 Prediction of design effects is often non-obvious and requires careful consideration of which 
design input is being altered, and makes redesign problems challenging for humans to solve.  These 
considerations make redesign problems insightful within the cognitive study since they are not easily 
solvable, but are still informed by domain knowledge relevant to the design space.  Additionally, 
redesign scenarios are prototypical in bio-based design, since engineers typically leverage known 
biological structures and reconfigure them for artificial purposes. 
     
2.3 Multi-level Graphical User Interface 

 The mathematical model was embedded in a GUI such that design inputs are manipulated via 
slider bars and behavioral outputs are plotted.  When introducing the GUI to participants, they are told 
that all myosins in a muscle are always identical, therefore altering the nanoscale structure of a myosin 
results in all myosins within the muscle changing. Renderings of a single muscle and myosin in the 
GUI (Fig. 2) update in real-time to reflect design changes—the muscle schematic’s height and width 
change in size, while the myosin schematic’s height and the arrow next to it (which represents binding 
affinity changes) change in size to reflect differences in relevant design inputs.  
 The resulting system behavior at the nano and macroscales was output visually across plots that 
represent the 8 unique pair-wise combinations of 4 design inputs as independent variables (muscle 
area, muscle length, myosin lever arm length, and myosin binding affinity), and 2 behavioral outputs 
(nano/macro velocity and energy usage).  The third output behavior, force, is communicated via text 
because it is assumed constant at the muscle scale, and only changes for myosins when lever arm 
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length changes. Additionally, the muscle contraction force (which is constant) and time average force 
per myosin is presented via text to convey these spatial relationships to users.  The GUI was developed 
with Java using the JavaFX 2.0+ API and is presented in Figure 2.  
 

 

Figure 2. Multi-level GUI for designing muscles and myosins 

 
 The goal of the GUI is to train users in critical domain-based and multi-level reasoning 
concerning the system, through demonstrating how design alterations of one parameter affect the 
behavior of the system at both scales.  To reduce cognitive load and promote learning, modules are 
added in steps during GUI training sessions.  First, the GUI is presented with only the design inputs 
and schematics of myosin and muscle, text stating the force and size of the muscle, and the size of 
each myosin.  Users are then asked how they expect a change in each design slider to affect the 
number of myosins in the system, which is increased by increasing muscle area or muscle length, 
decreased by increasing lever arm length, and not affected by binding affinity.  Upon answering each 
question, the interviewer then changes the slider to show the user whether they were correct or not and 
then provides the proper explanation if necessary.  Through this strategy, learning is improved through 
having participants put forth effort into their reasoning processes, which optimizes cognitive load that 
facilitates learning.  After the exercise is completed for each slider, it is repeated through adding the 
myosin force text to the GUI and asking the same set of questions.  After this round is completed, one 
more round is conducted by asking how each design parameter will affect the velocity of the muscle or 
myosin as relevant charts are included. Through these exercises, a user is expected to learn the effects 
of changing a design input on both the nano and macroscales, and inter-level relationships such as how 
the number of myosins is altered through lever arm and muscle design changes. 

3 COGNITIVE STUDY RESULTS 

 The results for the cognitive study are presented in three sections that reflect the three phases of 
the study protocol: First, a baseline measurement for determining prior knowledge and familiarity of 
muscle structures and behaviors is presented, then pre/post-training results to determine the effectives 
of a GUI-based training session, and lastly an assessment of how well each group could predict the 
multi-level effects of a redesigned system.   

3.1 Baseline Measurement for structures and behaviors 

 A baseline measurement was conducted to determine the knowledge each participant had with 
multi-level muscle structures and behaviors prior to any learning interventions.  Participants were 
asked to describe how muscles work at the lowest level illustrated in Figure 1, and how the lowest 
level behaviors influenced muscle contraction as a whole.  A key was created by two independent 
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graders listening to all interview session recordings and identifying components mentioned in the 
following categories: nanoscale structures, nanoscale behaviors, inter-level behaviors.  Any structure 
or behavior that was mentioned by at least two participants was added to the key, which filtered out 
obscure structures and behaviors to create a relevant grading scheme for comparison across groups.    
 The nano-level structures of the key consisted of: myosin, actin, ATP, calcium, and tropomyosin, 
with calcium and tropomyosin being nanoscale molecules that regulate when myosins can begin 
utilizing ATP and attaching to actin. Three nano-level behaviors were included in the key: myosin 
binding to actin (attachment), myosin force exertion on actin (power-stroke), and ATP being 
decomposed into ADP as its energy is transduced by the myosin (detachment).  These three nano-level 
behaviors correspond to the three primary behaviors of myosins that are crucial to understanding the 
myosin design space (Egan et al., 2013).  Inter-level behaviors included the sliding of filaments at the 
nanoscale enabling sarcomere contraction, and the contraction of sarcomeres enabling muscle 
contraction, which represent cases where higher level contraction emerges from non-contracting 
myosin behavior and when higher level contraction emerges from lower-level contraction of 
sarcomere units.  Using this key, each participant was provided a score of 1 or 0 depending on whether 
they correctly cited and described a structure or behavior, and results were aggregated for each group 
and presented in Figure 3.  
 

 

Figure 3. Structures and behaviors known by each participant group 

 
 The results demonstrate that the physiology expert population possessed greater domain 
knowledge of nano-level structures than the novice (p < 0.001) and mechanics expert (p < 0.001) 
populations and greater domain knowledge of nano-level behaviors than the novice (p < 0.002) and 
mechanics expert (p < 0.001) populations.  There were no significant differences between the novice 
and mechanics expert populations for these metrics.  This data reinforces the notion that medical 
students are representative of an expert population with different knowledge than engineers, and could 
potentially utilize information beyond what is presented to populations within this study to solve 
questions.  Additionally, it suggests that the physiology expert population is more familiar with the 
concepts that were taught to all participants; however, this familiarity could introduce challenges if 
their previous training is in conflict with concepts presented in this study (as found in the next phase).   
 All groups had a high rate of describing inter-level behaviors, with no statistically significant 
differences, which suggests that it is quite plausible for even novices to understand how muscles work 
across scales.  Such mechanical insights could have been reached by non-expert populations by 
inferences from the provided schematic and knowing that macroscopic muscles contract.   
 Before continuing to the next phase of the experiment, the interviewer provided information that 
myosins attach to filaments, exert force, and then detach and utilize energy to participants that did not 
demonstrate such understanding.  By ensuring all participants have the same basic knowledge of key 
structures and behaviors, the next phase of the experiment can assess whether that knowledge aids in 
reasoning about alterations in system behaviors as it is redesigned. 

3.2 Multi-level design reasoning 

 Participants were given redesign questions and asked to describe at the nanoscale and macroscale 
whether force, velocity, and energy consumption increased, decreased, or remained the same after 
system redesign.  These questions were asked pre/post-training and the number of correct responses 
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aggregated for each group are presented in Figure 4 with regards to pre/post-training correctness of 
responses at each scale (Fig. 4a; darkly shaded areas represent pre-training responses, while lightly 
shaded areas represent post-training responses) and each effect pre/post-training (Figs. 4b and 4c).  
  

 

Figure 4. Percentage of correct response pre/post GUI via plots and tabulations.  

 

 The first hypothesis proposed that Knowledge of structures and behaviors in a system are not 
sufficient for human-based predictions of how a system’s multi-level behaviors are altered during 
redesign, which is supported by no groups having greater than 50% correctness on nanoscale redesign 
questions pre-training.  Further, physiology experts that had the most prior domain knowledge 
correctly answered less than 17% of the redesign effects at the nanoscale, which is significantly 
different from the novice (p < 0.007) and mechanics expert (p < 0.014) groups.  The second 
hypotheses stated that Learning sessions bolstered with a multi-level design GUI will improve 
participants’ capability for predicting altered behaviors across scales during redesign, which is 
supported by all groups showing improvements for all questions post-training in comparison to pre-
training correctness with statistical significance of (p < 0.008), with the exception of mechanics 
experts performing well on macroscale questions both pre/post testing.   
 Going beyond the tested hypotheses, Figure 4a shows that mechanics experts performed better 
than other groups as a whole (p < 0.044) when considering macroscale phenomenon. This suggests 
that their training is well-suited for mechanically-based problems at macroscales, which is a 
cornerstone of engineering education.  Physiology experts performed worse on nanoscale reasoning 
than other groups, which suggests that their past training may have biased them towards thinking 
about relationships in the design space ineffectively for solving mechanically-based redesign 
problems.  In Figure 4b, mechanics experts performed significantly better than physiology experts (p < 
0.003) for correctly assessing the force at the nanoscale, which suggests their expertise is important for 
biological design domains in addition to physiological knowledge.  These measurements demonstrate 
that despite the differences in initial knowledge and problem solving skills by each participant group, 
that GUI-based training aid in promoting effective reasoning within and across scales. 

3.3 Reasoning about Patient Health 

The final hypothesis proposed that Increased expertise leads to an increased capacity for 
predicting how the redesign of a complex system’s subcomponents will influence system-wide 
functioning. Participants were presented schematics of a typical distribution of heart muscle tissue and 
an atypical distribution that is enlarged for certain areas of the heart (Figure 5). Dark red areas in the 
schematic highlight the differences in muscle tissue distribution for the two hearts.  Participants were 
asked to describe the effects that having an enlarged heart may have on a patient. The number of 
effects participants described at four different levels of scale: Molecular scale effects (e.g. myosin 
generates more force), tissue effects (e.g. muscle contracts faster), organ effects (e.g. heart has larger 
volume), and bodily effects (e.g. patient has possible dizziness) were counted.  The results are 
presented in Figure 5 for the average number of effects described at each scale.  
 The results show that all groups described a similar number of effects at the molecular and tissue 
scales (no statistically significant differences were found). The finding supports the notion that the 
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design GUI was effective in teaching myosin and muscle related phenomenon, as the physiology 
expert population did not bring in outside information to describe effects beyond those of the GUI. 
 

        

Figure 5. Heart schematics and number of effects describe across scales by participants. 

   
 At the organ scale, mechanics and physiology experts as a whole described an increased number 
effects in comparison to the novice group (p < 0.47).  This findings suggests that in addition to 
supplementary domain knowledge that physiology experts may possess, these groups may benefit 
through expertise in knowing how to reason about complex systems generally, rather than domain 
specific manners novices tend to utilize (Rottman et al., 2012).  Through having a generalized 
organization of knowledge about the system, these experts are suggested to better predict effects 
beyond the domain knowledge taught from the GUI sessions, whereas novices focused on the 
molecular and tissue scales where domain knowledge was taught explicitly by the GUI.  Additionally, 
they may be better skilled at intuiting effects from analyzing the schematic itself, such as the visibly 
smaller chamber in the atypical heart leading to increased blood pressure in that region.   
 Physiology experts outperformed both the novices (p < 0.026) and mechanics experts (p < 0.011) 
in describing bodily level effects, which can be explained through their previous training as medical 
students and familiarity with cardiac hypertrophy diseases (Moore et al., 2012).  They may 
additionally have better schemas for organizing system interactions and generalizing effects pertinent 
to health based on their expertise in human physiology.   
 These findings support the hypothesis that expertise leads to improved reasoning about system-
wide effects through structural alterations representative of redesign problems, which is a necessary 
skill when considering any biological design utilized in health care will have potential interactions 
with the entirety of a patient’s bodily systems. 

4 DISCUSSION AND CONCLUSION 

 Emerging bio-based design applications, such as organ printing, are creating blurs among 
engineering and medical fields.  One of the greatest challenges in creating products is the traversal 
of non-obvious multi-level relationships within bio-based design spaces. In this study, a multi-level 
mathematical model and design GUI were created for testing the understanding, learning, and 
reasoning processes of novice (STEM undergraduates), mechanics expert (engineering doctoral 
students), and physiology expert (medical students) populations for multi-level muscle systems. A 
cognitive study was conducted that measured participant’s initial knowledge, pre/post-training 
capabilities for assessing behavioral changes at different scales when the system is redesigned, and 
whether they could relate subsystem alterations to effects to system-wide functioning.   
 Three hypotheses were tested, which were all supported by empirical measurements.  The first 
hypothesis proposed that Knowledge of structures and behaviors in a system are not sufficient for 
human-based predictions of how a system’s multi-level behaviors are altered during redesign. It was 
supported by all groups performing poorly on initial muscle redesign questions, including 
physiology experts that possessed a high amount of structural and behavioral knowledge of muscles 
prior to the study.  The second hypotheses stated that Learning sessions bolstered with a multi-level 
design GUI will improve participants’ capability for predicting altered behaviors across scales 
during redesign. It was supported by all groups showing significant improvement on multi-level 
redesign questions when comparing pre/post-training performance.  The final hypotheses proposed 
that Increased expertise leads to an increased capacity for predicting how the redesign of a complex 
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system’s subcomponents will influence higher level system functioning. It was supported by 
physiology experts describing more whole body effects that could emerge from an enlarged heart 
muscle, and both expert groups describing more organ level effects in comparison to novices.  
 These findings suggest that knowledge of the structures, behaviors, and functions of a system, 
which is widely regarded as beneficial for understanding and communicating changes in complex 
systems, are not sufficient for redesigning complex multi-level biological systems.  Participants 
were shown to properly understand redesign influences in the design space once they completed 
learning sessions with a multi-level GUI, and learning successes by the novice group demonstrated 
that the learning sessions were highly effective, even for non-experts.  Mechanics and physiology 
experts also had contrasting skill sets—mechanics experts had greater intuition for describing force 
distributions, while physiology experts could better extrapolate how alterations in muscle affect 
patient health. These findings lay the foundation for studying bio-based design intersections across 
medicine and engineering, which has great potential in promoting healthier lives. 
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