
SUPPORTIVE TECHNOLOGIES 551

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2002
Dubrovnik, May 14 - 17, 2002.

INFORMATION MANAGEMENT FOR MULTI-
TECHNOLOGY PRODUCTS

Daniel Svensson and Ivica Crnkovic

Keywords: PDM, SCM, Integration

1. Introduction
Products traditionally regarded as mechanical or electronic products, are more and more dependent on
software and firmware. Software is used to implement functions that earlier have been done in
mechanics or electronics, thus software is becoming an integral part of products. Examples of such
multi-technology products can be found in many industries such as consumer products,
telecommunications and in the automotive industry.
Companies designing and producing mechanical and electronic products often have problems
integrating the mechanical and electronic design process with the software design process. The
processes have become isolated islands, and the overall process faces two types of problems: First it is
difficult to efficiently exchange information between different processes, and second, in many cases
there is multiplication of the same information. The result is additional development or maintenance
costs, delivery delays, or similar, and even the decreasing quality of the delivered products. Therefore,
many companies are facing a strong need to integrate both the processes and the information systems.
An overall integration of these processes is not trivial. First, the separate processes are complex
themselves, and often suffer from the same problem themselves [Stevens 1998, Estublier 1998].
Second, the traditions and cultures of these areas are different. While mechanics and electronics
development have a long tradition of development with many established standards and procedures,
the software development field is less mature, but more flexible. When people from these areas meet,
they do not understand each other. The third problem is the difficulty to integrate tools from the
domains [Crnkovic et al. 2001]. PDM systems (Product Data Management) are used to manage
information in mechanical and electronics design [CIMdata 2001], while information about the
software design is separately managed in SCM systems (Software Configuration Management). The
use of separate information systems makes it difficult to manage the complete product if it is built
from mechanics, electronics and software. An important prerequisite for a successful process
integration is the integration of these tools. For vendors and users, the payoffs are likely to be
tremendous for a relatively low cost and minimal investment of resources. However, in general there
is a lack of integrated knowledge of both disciplines, and exhaustive research is needed to find out
which ways of integration and interaction are the most suitable.
This paper aims to address these problems. We give an overview of the mechanics and electronics
(ME1) design process and the software (SW) process and discuss the information flow within and
between them. This includes finding the common parts of the development processes and the
information models; what information can be managed in separate by the teams, and what information
is necessary on the product level. Based on the processes and information used, the tools and their
integration is discussed. Underlying the paper is a comprehensive interview study of the situation in

1 ME (Mechanics and Electronics) design is not an established term, but used in this text.

552 SUPPORTIVE TECHNOLOGIES

Swedish industry [Persson et al. 2001], their current use of processes and tools and their needs. The
current trends and state of the art in research and industry have been reviewed, and commercial PDM
and SCM tools have been studied.
The remainder of the paper is organised as follows. Section 2 gives an overview ME development
process and the SW development process, and analyses the information flow in them. Section 3 gives
an overview of the main functions of PDM and SCM tools. Section 4 discusses the integration of the
processes, information flow and the tools. Finally, we conclude the paper in Section 5 by summarising
the findings and listing issues for future work.

2. The needs
The aim of this section is to define how the processes are performed and what information is managed
in ME and SW development.

2.1 The process
Product development involves many activities performed in parallel. The Integrated product
development model [Andreasen and Hein 1987] consists of three main activities: Marketing, product
development and production. Through these activities, we must be able to manage product related
information. This high-level model is general and valid for ME as well as SW development, although
different sub-activities and different priorities will be emphasised. For example, software production
activity is significantly smaller than its development, while optimisation in the production phase are of
crucial importance for mechanics and electronics production.
We shall focus on the development process. To describe the processes, we use generalised process
models in which we distinguish different activities shown as a sequence. In reality, activities are
performed in parallel and repeated in an unpredictable manner, but process descriptions can still be
useful for several reasons; here we will use the process models to study how information is created,
how it evolves and how it is used during the development process. Our approach is to describe the
processes for ME and SW development and map the processes to the information types associated
with product development. By studying the differences between the processes for ME and SW design
and comparing the evolution patterns of the information created, we can find the necessary interfaces
needed between the two processes and find out how they can be co-ordinated, planned and supported
by information systems.
To describe the main steps of pure ME development, we have adopted a generic development process
from Ulrich and Eppinger [1995]. The process contains five steps, as shown in Figure 1. It starts with
a conceptual development phase, were the needs of the market are investigated and the overall
requirements defined, followed by the generation of product concepts. In the system-level design
phase, the architecture of the product is decided, which includes to identify sub-systems, components
and the interfaces between them. The components are designed during the detailed design phase. The
testing and refinement phase includes to build product prototypes used to test both the product and the
production system. During the production ramp-up, the production system is used for serial production
of the product, starting at a low pace, and then increasing to full production capacity. We will not treat
the development of the production system here, but we must take it into consideration as an essential
part of ME development. Figure 1 shows the types of information used to describe the product. The
bars show roughly in which of the phases information evolves. In the early phases, the product is
described by functions and possibly also in terms of principle geometric layouts. The architecture is
not an information object in itself, but is described by geometric layouts, system structures and
preliminary product (component) structures. During the detail design, the product structures get more
detailed until it is time for the final release of the product documentation.
The software development process [Sommerville 2001] follows a similar schema. During the
requirements analysis phase, the system’s services, constraints and goals are established in the system
specification. In the next phase, software design, an overall system architecture is established, in
which the fundamental software systems abstractions and their relationships are identified and
described. The implementation phase comprises formalisation of the design by creating source code or
using pre-existing code or packages. The implemented units of software are created and tested. In the
integration phase, the SW units are integrated in a software system.

SUPPORTIVE TECHNOLOGIES 553

Concept
Development

System -Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp -Up

Requirements

Functions & Features

Product Architecture

Sub-systems & Components

Tooling

Prototypes

Manufacturing process

Create /change

Read

Figure 1. ME development process and information usage

The integration phase corresponds to the production of ME. During the test phase, the system is
verified and validated. Finally, the system is released and delivered to a customer. The phases of the
development process are shown in Figure 2. This sequential model is also called a waterfall model.
We can, however, see that the information flow is not sequential, bur rather follow a V-shape. Indeed
there is a development model called the V-model [Stevens et al., 1998], which provide support for
exchanging information between the different phases of the process.

Design Test Release

System requirements

System architecture

Functional description

Source Code

Executables

IntegrationImplementationRequirements
Analysis

Create/change

Read

Figure 2. SW design process and information usage

2.2 The information
The information needed to capture the work during the development includes various kinds of
structures and design documents such as geometry models and text documents.
The evolution diagram for the ME development process contains various information types describing
the design. (We do not treat the information describing the manufacturing process here.) A
requirements driven product model by Sutinen et al. contains this information [Sutinen et al. 2000],
see Figure 3a. This information model contains requirements, function structures describing the
functions and features, system structures that partly describes the system architecture, and finally part
structures describing the parts (components) building the product. The model also contains property
models and life-cycle models, but these are not described here. The information structures can be
inter-related to describe how requirements are fulfilled by functions, how functions are solved by
systems, and how systems are realised by parts. The design documents, geometry models etc., can be
structured by relating them with the structures.
In the software development process, structures on similar levels of abstractions are used, but there are
differences, see Figure 3b. Similar to ME development, SW development starts with requirements
engineering, which includes requirements collection, analysis and specification. The result is a list of
grouped requirements. The software architecture developed during the design phase deals with
structure of the software system, which comprises software components, the externally visible
properties of those components and the relationships among them. The development structure used

554 SUPPORTIVE TECHNOLOGIES

during the implementation phase includes source code and documentation related to it. It is natural that
the software architecture and the development structure are as similar as possible, but in practice they
are separated, which is a result of two factors: First, the development process itself. The isolation and
co-ordination of development activities requires a structure different from the software architecture.
Second, many of the development tools used require specific structures. A completely different
structure is the one of the delivery package. It includes binary and user-documentation files and is
adjusted to be most convenient for the delivery (note also that different structures can be defined for
different delivery media). This structure is derived from the development structure by a build and
release activity. Finally we have a structure on the target system, when the software is installed. For
embedded systems this structure is the same structure at run-time, and it is often hidden from users.
For non-embedded systems, or large systems, we differ two structures – installation or deployment
structure where the software is saved on a media and ready to run, and run-time structure in which the
software is executed. In both cases this structure is usually hidden from the user, so we can consider it
as one structure.

System requirements (classified)

Function structure

System structure

Part
structure

Software requirements (classified)

Development structure

Delivery package

Target system
structure

a) ME structures b) SW structures

Figure 3. Structured information used in ME and SW development process

Comparing ME and SW structures we can find many similarities. Both start with requirements, overall
system design and identification of system functions. The function structure for ME design is
connected to a system structure which corresponds to the physical structure of the system. This
structure is later related to the part structure where the physical parts of the systems are specified.
Software does not have physical components like hardware. For this reason it is possible to use a
development structure that corresponds to the system architecture, i.e. to a logical structuring.
However, when the software is built, the internal functional structure disappears. This degeneration of
the structure may cause problems in the software maintenance. Traceability problem (i.e. the
possibility to find the cause of a problem) is one of the main problems in software maintenance.

3. The tools
The main prerequisite for a uniform and well integrated process is the integration of the tools
supporting these processes. PDM systems integrated with other tools (such a CAD/CAM tools) are
widely used in ME development. Software development uses SCM tools integrated with development
environment tools, such as editors, compilers. etc. What does these tools have in common? What
information do they process? To answer to these questions, let us look first at these tools.

SUPPORTIVE TECHNOLOGIES 555

3.1 PDM systems
PDM systems are computer systems which are used to handle product data. The user functions of a
PDM system can be defined as [CIMdata 2001]:

• Data Vault and Document Management – Documents must be stored in an organised manner.
Information about the documents (meta-data) is stored in a central database. Document
management routines are used to manage release and change of documents.

• Workflow and Process Management – Routine processes can be monitored and controlled by a
PDM system.

• Product Structure Management – Product structures are defined and changes of them
controlled.

• Part and Component Management (Classification & Retrieval) – Standard parts can be
classified to support re-use.

• Project Management – A large project can be broken down in sub-projects. The progress of a
project can be tracked.

When it comes to managing product structures, PDM systems traditionally aim at managing part
structures. A parts structure is typically built of assemblies and parts, possible variants of the parts,
revisions of them and relationships to documents. Most PDM systems are customisable and it is
possible to define specialised object types, such as functions and systems. This kind of object types
can be found in some PDM implementations.
PDM systems are not specialised for managing requirements. Requirements management is often
supported with specialised systems, called RM (Requirements Management) systems. To achieve
good traceability between requirements and product information, and thus support for a product model
spanning from requirements to life-cycle systems, as in figure 3a, integration between the PDM
system and the RM system is needed [Svensson and Malmqvist 2001]. Integrations between
commercial systems will be available in the near future.

3.2 SCM systems
SCM systems are used to control the evolution of complex software. From a management perspective,
SCM directs and controls the development of a product by the identification of the product
components and their related documents, product structuring, control of their continuous changes,
status accounting and auditing. From a developer perspective, SCM maintains current components,
stores their history, offers a stable development environment, build the products and co-ordinates
simultaneous changes in the product. SCM includes both the product (configuration) and the working
mode (methods) and the goal is to make a group of developers as efficient as possible in their common
work with the product.
SCM treats first of all complexity of software products. As software became more complex, the SCM
functions increased. Today, there are many disciplines covered by SCM, and the most important are:

• Version and Configuration Control - The possibility to store different versions of software
items to subsequently be able to retrieve them and select particular versions in a configuration.

• Build and release management – Mechanisms for keeping generated files up to date,
managing final products in form of software packages suitable for distribution and installation.

• Workspace management – A support for developers working in a project. Controlling the
working versions of the modules being developed.

• Change management – A system supporting the management of the collection of change
requests, for instance in collaboration with customer support, the generation of error reports,
firm change requests, implementation of those changes, documentation of the problem and the
solution, and when it is available.

• SCM Process support – In the recent years, especially as a consequence of emergence of
CMM the process aspects of the SCM activities, i.e. their planning, executing and measuring,
became an important part of SCM.

These disciplines are much related to the software development cycle: Editing source code and
building it. The products of that process, i.e. binary files, traditionally were not part of SCM, since it

556 SUPPORTIVE TECHNOLOGIES

was easy to re-produce them. The objects treated by SCM were mostly source code modules.

3.2.1 Comparison of the tools

Even if PDM and SCM are specialised systems with unique functionalities, there are many functions
common to the both systems. Table 1 compares the functionalities of the both systems.
PDM systems are strong on product structure management. Moreover product modelling in SCM is
very weak. SCM systems do not contain a product model. The differences in approach come from
fundamental differences in the nature of hardware products: In PDM, the product has a physical
existence and consists of physical parts. For that reason the product structure can be represented by a
part structure. In software there is no such physical structure.
The strength of the SCM systems lies in the support for software development, by supporting its
specific demands for version management [Persson et al. 2001] and by providing functions such as
build and release management. However, the software development process is getting more complex.
In addition to traditional source code management, some new SCM systems can manage other type of
objects, with different internal structures and different types of relations. The previously dominant
version management has been overwhelmed by the configuration/selection discipline. In this respect
SCM became less software-specific and more similar to PDM solutions.
Finally, it should be noticed that change management is supported by both tools.

Table 1. PDM and SCM functions (Adapted from [Persson et al. 2001])
Type of functionality PDM SCM

Version Management Yes (basic) Advanced

Product Structure Management Yes No

Build Management No Yes

Change Management Yes Yes

Release Management Yes Yes, but weak

Workflow and Process management Yes No

Document Management Yes Partly

Concurrent Development No Yes

Configuration/Selection Management No Yes

Workspace Management No Yes

Roles Yes Yes, but weak

4. Overall process integration
From Table 1 we see that PDM and SCM tools share many common functions. However it is not
sufficient to look at the support of the tools, but the overall process must be taken into account. We
must look at the possibility of process, information and, finally, tool integration.

4.1 Process integration
To be able to control the development of an ME/SW product, the two processes must be integrated in
an overall development process. Figure 4 shows the activities from a typical systems development
model [Stevens et al. 1998], which describes how a system is developed by a successive division into
sub-systems, which are developed in parallel, followed by integration of them. The subsystem
developed can be realised in ME, software or any other technology. In Figure 4, the ME and SW
design processes are integrated. They run as parallel processes after the architecture has been defined.
To be able to control how the development succeeds in terms of the maturity of the design, life-cycles
needs to be defined for relevant information objects, such as systems and components, to define which
states the object are in. The maturity of the design, can then be captured by indicating in which life-
cycle phase an object is. Life-cycles need to be defined both for SW systems, ME components and the
overall system, see Figure 4, which also explains how the life-cycles can be related with the process.

SUPPORTIVE TECHNOLOGIES 557

4.2 Information integration
Before going into the discussion of how to integrate the tools, it is important to identify the
requirements for common data management. How is the information from the two domains best
integrated? We have found two alternatives: (A) Treat the software as components by managing the
executables as such or (B) Treat the software’s internal structure as a part of the system developed.

System Design
System
Tested

System
ReleasedStarted Defined

System
Integrated

IntegratedCommon
Concept

Development
System-Level

Design
Detail
Design

Testing and
Refinement

Production
Ramp-Up

Requirements Design Implementation

Independent

Test ReleaseIntegration

Requirements
Definition

Define
Functionality

Define
System Arch

System
integration

System
verification

System
Release

Concept
Defined

Component
Design

Prel. App.

Tooling
Design
Allowed

Component
Approved

Started

System life-cycle

ME life-cycle

SW life-cycle Concept
Defined

SW Design
Prel. App.

SW
Integrated

SW
Approved

Started

Figure 4. Integrated ME and SW design processes with connection to life-cycle phases

Alternative (A) is a consequence of a hardware oriented view on product development and information
management. According to the hardware oriented approach, the product is comprised of components,
which are assembled in a manufacturing process. Hence, the software object corresponding to a
component is an executable, which is downloaded to the product in the manufacturing process. This
way of managing software information is sufficient from a supply point of view, but the design
process puts higher demands on information management. One single software system, delivered as
one executable or as an installation package, contains many functions in form of applications,
packages, data, etc., fulfilling a number of requirements. To achieve traceability between
requirements and software sub-systems, a more detailed product model is needed. An analogy to treat
software as executable components, would be to manage a car engine as a component during the
development process, just because all parts are mounted together.
Alternative (B) takes one step further and manages not only the executables, but also other kinds of
structured information related to the software, such as requirements, documents, baselines, and
software specific product structures, such as the installation package structure. This way, better
traceability from system level and down to components is enabled.
In Figure 4 we see that there are isolated points in the development life-cycle where activities are split
up to separate activities and when they are again merged together. At the split point it is important that
all system related information created is accessible and that it is possible to import this information
into the tools used in the following activities. Figure 1 and Figure 2 show the information flow through
the phases. From these figures we can summarise that we need the information flow of the following
assets:
From common activities to the parallel ME and SW activities we need requirements, change requests
and system design (defined partly by a product structure). From the parallel activities to the integration
phase we need requirements, final detailed design and the final deliverables (executable code for
software, prototype specifications for ME and documentation for both). From this we can conclude
that for both ME and SW development processes should follow common procedures for: product

558 SUPPORTIVE TECHNOLOGIES

structure management, requirement management, change management and in general document
management.

4.3 Tool integration
The basic requirement for an integration is to be able to control the parts and software systems
building the product. This includes managing their versions and their combinations.
The system structure is the logical point for integration. The PDM system manages the system
structure (as a product structure), which in turn points out how the systems are realised. The ME parts
structures are easy to relate to the system structure, since they can be stored in the PDM system. The
development structure in the SCM system must be referenced to in some indirect way. From the SCM
system, the following objects must be transferred: Source code baselines, executables, and life-cycle
status of the SW system developed. The source code baselines can be stored in the PDM system the
same way as parts structures, and the life-cycle status of the SW system can be stored as a property of
the system object. The executables are often stored in archives and referenced from the PDM system.
This integration has achieved the following: (A) The information about the product with its ME and
SW constituents is available. (B) It is possible to follow the maturity of the design for both a system as
a whole, and for its ME and SW constituents. This facilitates the management of the complete product,
both from an information management perspective and from a project management perspective.

PDM SCM

System structure

ME part
structure

Development structure

Source code
base line

Internal SW structures
Executables

Figure 5. Integration of PDM and SCM systems

The previous description roughly outlines the information system architecture for the integration, with
emphasis on product structure management. Further decisions have to be made about how to best
utilise the functionality of each system. As we pointed out in the previous section, requirements
management and change management are common activities for ME and SW design. However, we
consider product structure management to be an important prerequisite to be able to successfully
perform those activities.

5. Conclusions and future work
In order to effectively manage ME and SW development, a systems development perspective is
needed. In the early phases, before the technology is selected, the development process can be treated
as a common process, while the process splits in two paths during the development of the ME and SW
sub-systems, which meet again at integration time. The system is the common concept for ME and SW
design. Therefore, to control the evolution of the system developed, a life-cycle must be defined, not
only on component level, but also on SW level and overall system level. To be able to manage the
information for ME and SW together, requirements, functions and systems are objects common for

SUPPORTIVE TECHNOLOGIES 559

ME and SW development. Below system level, different information is used in the two domains. A
PDM system can manage system structures for the complete system, and also component information
for the ME parts of the system. An SCM system can manage the internal structure of the software
developed, including the detailed version management of source code files. Executables and the
relationships between system versions and software versions can be managed at the system level in the
PDM system.
An interesting subject for future research is to study the requirements on information management
from other perspectives than design, with manufacturing and maintenance as those most important.
Further, the information management in the ME and SW domains must be compared on a deeper level.
To be able to have an integrated information management, a common terminology and understanding
between the two domains must be achieved.

References
Andreasen, M. M., Hein, L., " Integrated Product Development", IFS Publications Ltd., London, 1997.
CIMdata, "collaborative Product Definition management: An Overview", CIMdata Inc., Ann Arbor, MI, USA,
2001.
Crnkovic I., Persson Dahlqvist A., Svensson D., "Managing Complex Systems – Challenges for PDM and SCM"
IEEE Proceedings, Asia-Pacific Conference on Quality Software Hong Kong , December 2001.
Estublier J., Favre J.-M., Morat P., “Toward SCM/PDM Integration?”, System Configuration Management,
SCM-8, Lecture Notes in Computer Science 1439, Springer, pp. 75-94, 1998.
Persson Dahlqvist, A., Asklund, U., Crnkovic, I., Svensson, D.,Ranby, J., Hedin, A., Larsson, M., "Product Data
Management and Software Configuration Management: Similarities and Differences", Technical Report, The
Association of Swedish Engineering Industries, ISSN 1493-6444, 2001.
Sommerville, I., "Software Engineering", Sixth Edition, Addison-Wesley, Harlow, UK, 2001.
Stevens, R., Brook, P., Jackson, K., Arnold, S., "Systems Engineering - Coping with Complexity", Prentice Hall,
Hertfordshire, UK, 1998.
Sutinen, K., Almefelt, L., Malmqvist, J., "Implementation of requirements traceability in system engineering
tools", Proceedings Produktmodeller´2000, November 7-8, Linköping, Sweden, 2000.
Svensson, D., Malmqvist, J., "Integration of Requirement Management and Product Data Management
Systems", Proceedings of DETC'01, Paper No DETC2001/CIE-21246, Pittsburgh, Pennsylvania, USA, 2001.
Ulrich, K. T., Eppinger, S. D., "Product Design and Development", McGraw-Hill, Singapore, 1995.

Daniel Svensson, PhD Student
Chalmers University of Technology, Product and Production Development
SE - 412 96 Göteborg, Sweden
Telephone: +46 31 772 5855
Telefax: +46 31 772 1375
Email: daniel.svensson@me.chalmers.se

