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1 Introduction

In the early design phases three main levels of abstraction can be distinguished, which
describe the function, the principle and the embodiment (layout/form). Suitable
representations (e.g. function structure, solution principles, preliminary layout or detail
layout) exist for these three levels of abstraction [1]. For a continuous computer-aided product
design a phase overlapping multi-stage modeling is necessary, which connects the different
levels and the according representations. The aim of the paper is the presentation of the
concept and an exemplary implementation of a convenient software application, which
supports an iterative design (changes in lower levels of abstraction are propagated to higher
levels and vice versa). The described approach based on a function-oriented configuration.
For this four procedures of configuration of products will be discussed. The exemplary
implementation is oriented to the conceptual design (determination of function structure and
solution principle) and the first steps in embodiment design (development of preliminary
layout and form) of technical products with mechanical components.

2 Feature- and constraint-based modeling

For the development of a generally applicable, phase overlapping design tool the
independence of specific structures and of the degree of complexity on the different levels is
very important. Therefore, a generic approach for modeling and processing must be used.
Constraint solving in connection with a generic constraint solver is a powerful technique for
parametric design of 2D- and 3D-models and fulfills the designated requirement [2]. The
models are described by parameters, geometric elements and constraints between them. This
modeling technique is suitable for modeling functional structures, solution principles,
preliminary and detail layout of a product (Figure 1). In this way functional, technological,
geometric und topological properties can be integrated into one model.

It is possible to integrate non-geometric quantities into the constraint-based model by means
of equation constraints. An example on the three main levels of abstraction is shown in
Figure 1, where a piezo element causes a translation according to a given voltage. In addition
Figure 1b shows the constraint based model and the constraint graph of the solution principle
as example for a suitable constraint-based model description. Table 1 contains some examples
for geometric and non-geometric constraints, which will be used to generate constraint-based
models like shown in Figure 1b (refer to [5] for a more detailed description of the modeling
syntax).
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Figure 1. Model of a translation element
a) functional structure
b) solution principle with the corresponding constraint model and graph
¢) detail layout

Table 1. Examples for geometric and non-geometric constraints
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Often mechanisms and gears for example can be mapped onto the plane. In these cases, 2D
constraint solving is sufficient, even though the visualization in embodiment design is 3D. To
handle spherical mechanisms 3D constraint solving is used. The constraint-solver is
developed at our University [6]. It supports the generation and robust handling of design
variants on all levels of abstraction.

Applying constraint solving to the development of models means to simultaneously handle
the following views - the intuitive, high-level description conveying the user's intent by
symbols, pre- and user-defined elements or parts , on one side, and the constraint-based, low-
level design on the other side (see Figure 2).
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Figure 2. Connection between high-level and constraint-based description

For a suitable combination of high-level and low-level description we employ the feature
concept [3]. Features are a subsumption of both descriptions. Features combine data and
methods of the two levels of description as one entity (see Figure 3).
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Figure 3. General structure of a feature
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In the data part, common information (e.g. name, position and orientation) and symbol
specific information (e.g. shape and IDs for the constraint solver) are stored. Data will be
manipulated using the methods defined in the methods part. Three groups of methods can be
distinguished. The methods of the high-level description implement user interaction, drawing
of symbols, pre-, user-defined elements and parts. The low-level methods generate a suitable
constraint-based description. Furthermore, they implement the interface to the constraint
solver for geometric evaluation and data transfer. The third group provides an interface to
other necessary calculation modules, e.g. for kinematics or static evaluations. The shared data
concept and according update mechanisms allow the synchronization between the different
descriptions in the feature.

3 Design phases overlapping models

Figure 4 shows the design process and the relationship between functional, principle and part
structure. Here, solution principles consist of principle elements and couplings (e.g. joints).
This distinction is important when solution principles are used as basis for part design
(couplings become connections)[1].
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Figure 4. Relationship between functional, principle and part structure
(FE = function element, PE = principle element, P = part, CP = couple point, AS = active surface,
CS = contact surfaces, AA = active area)

Design tool internally the constraint-based model on each level of abstraction is mapped onto
a constraint graph respectively constraint network (Figure 5). That allows fast degree of
freedom and dependency analyses using methods from graph theory. For each change of
certain parameters or geometric objects in the model the constraint solver generates
automatically an appropriate sequence of necessary calculations, which ensures, that the
changes are propagated and all levels of the model are kept consistent. That way the values of
parameters and geometric objects, defined in the different levels, are synchronized by use of
references. Figure 5 shows the constraint networks for different levels. Dashed lines between
the networks clarify the references for the synchronization.
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Figure 5. Phase overlapping constraint network

Predefined solution elements (features, which represent components, assemblies and
systems), which integrate sections of the complete constraint network (Figure 3), are supplied
-to support user-oriented modeling. The constraint-based model (with its parameters,
geometric objects and constraints) is generated automatically as part of each feature. Features
are defined in all levels of abstraction (Figure 6) and are termed function, principle and form
feature. On each level of abstraction exist basic features, which represent units like function
elements. Basic features can be combined to logical units. These compound features represent
gears or mechanisms for example. According to this, phase-overlapping features contain
defined model properties on different levels of abstraction. The complete model consists

basis, compound and phase-overlapping features.

! synchronisation

<

form

| feature
form .

feature |

level specific basis features

L SRS h Tie e R function
L I | | - |
o function ] function i
. ; feature ; | feature |
- g ok i ,
1] |
.‘ E | ; 3‘ :
% » ; principle ! i principle principle L — ";principle
. - feature i lg feature feature I principle
= i § i X TN } |_feature |
’ E i § ] \ principle i i
. 3-;-§ { | | feature | i
2 g e A, i ;
. :.:5:0 ;
O
: !

Figure 6. Basis, compound and phase-overlapping features in relationship to the constraint solver
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Within one level joining features (and according constraints) are responsible for connections
between the elements. Connections between corresponding features of different levels are
realized by bi-directional references (Figure 5). Creation and deletion of features is syn-
chronized using these references. Features supply level specific attributes (data) and different
methods. These methods are responsible for the interactive generation and modification of the
model and its graphical representation. Furthermore, they allow the coupling to calculations
like kinematical analyses, motion simulations or force analyses (Figure 3).

4 Approaches of configuration procedures for modular systems of products

Equipment for measurement, fabrication, assembling processes, cars, robots and many other
machines and devices have modular structures to facilitate production, installation, applica-
tion, service and recycling of these products. This kind of structure has also the advantage that
the product can be configured conform to the costumer requirements.

The design process of such products starts with the function structure. Each subfunction can
be carried by various prepared modules. A module should be available in different levels of
description and different quantitative variants to perform functions within a certain range of
parameters. The combination of the modules produces the desired product variants. This
procedure, based on a logical sequence of design steps, is called configuration [4][7].

The configuration procedure depends on the type of function structure. Products with a given
function structure can be configured directly with the steps: parameter specification, choice of
components and layout generation (Figure 7).
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Figure 7. Catalog- and function-oriented configuration of modular products

In relation with the mode to establish the functional structure can be distinguished four
configuration procedures:

1. Configuration by using prepared function structures, stored in a catalog (selection
procedure). Figure 1 shoes a simple function structure of a linear positioning system.
It forms as base for configuration of other variants with different types of linear
actuators (electro magnet, linear motor, magneto-strictive drive) and guides (as
sliding; rolling, aerostatic or spring guides).
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2. Configuration by combination of sub-structures. From the simple one coordinate
function structure in Figure 1 can be configured a two (or also multiple) coordinate
positioning system by a serial arrangement (Figure 8).
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Figure 8. Configuration of a two coordinate positioning system by combination of two linear units from
Figure 1

3. Configuration by variation of given function structures. Each functional structure
can be modified by changing the arrangement of the function elements. From the
initial functional structure in Figure 8 are derived variants in Figure 9a and Figure 9b.
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Figure 9. Configuration by variation of given function structure and possible configurations as solution
principle and embodiment design (using design system MASP, see section 5)
a) variation using a two-coordinate guide; b) variation using two-coordinate actuator and guide
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4. Configuration by breaking down a complex function structure. The base of this
procedure is a maximum function structure representing a product family with all
possible sub functions (platform concept). In relation with the actual task or
application the structure is modified by elimination of not necessary function elements
(Figure 10).
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Figure 10. Configuration by breaking down a complex function structure
a) complete function structure of a coordinate measuring system (translation only)
b) derived and reduced function structure
(F-force, M-moments, I-information, s-stroke, W-electrical power)

5 Implementation

The ideas described in the previous sections have been implemented in an application called
MASP (program for Modeling and Analyses of Solution Principles). The interactive modeling
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of solution principles is done by selecting symbols in the context of chosen instruction (e.g.
create, delete, modify). For the first steps in embodiment design exist predefined form
elements in the mentioned design system. An example of a modeling sequence for a crank-
rocker mechanism is given in Figure 11a. Examples of embodiment design in MASP are
shown in the Figure 8 and Figure 9.
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Figure 11.Design system MASP for solution principles
a) interactive modeling of a crank-rocker mechanism
b) interactive simulation of motion by mouse dragging in 2D and 3D

During interactive high-level modeling, a low-level description by constraints is generated
automatically. MASP enables the user to test immediately the functionality of the current
design concept, for instance, by interactive mouse drags or by applying further calculations
(e.g. kinematics or static calculations) based on the evaluated constraint model [5].

The interplay of the different description levels is illustrated in Figure 11. The user modifies
the model interactively by dragging a joint. This information will be saved in the data part of
the joint (feature, see Figure 3). Based on the current parameters and positions in the low-
level description the constraint-solver computes the new positions of all connected geometric
entities as well as non-geometric data. Furthermore other calculation modules will be used to
recalculate dependent data, for instance to determine physical forces. After this, the updated
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high-level description is used to modify the representation on the screen, for instance the
symbol of the spring, which may include a visualization of the force.

It is easy to configure models of planar and spherical mechanisms and gears interactively with
the aid of predefined solution elements respectively features. Solution variants can be
determined interactively too. The variants of the model can be analyzed, simulated und
optimized concerning different properties.

6 Conclusion and Further Work

We developed the approach and a first implementation called MASP, an application which
supports the conceptual design phase and the first steps in embodiment design. The feature
concept was used to combine different description levels on different levels of abstraction. It
supports a function-oriented configuration of modular products. The constraint-based model
allows to perform various analyses to find a solution that fulfils the requirements. A bi-
directional model transformation is used for the transition between 2D-solution principles and
3D solid models. In future work, additional solution elements and calculation methods as well
as visualization of calculation results will be integrated into MASP. The presented work
follows from a research project, which is sponsored by German Research Foundation (DFG).
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