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1. Introduction 
Innovation is a knowledge-intensive process where new knowledge is created and evolved throughout. 
A central part of the innovation process is concept generation that involves the synthesis of new 
product concepts. Several methods for formal, computational design synthesis have been successfully 
developed during the last decades [Antonsson & Cagan 2001, Chakrabarti 2002]. However, most 
approaches are based on static knowledge that is captured up-front while the method and tool is under 
development and are often limited to a narrow, engineering viewpoint of a synthesis task. To enable 
new computational synthesis methods that support the innovation process, this is insufficient due to 
the temporal nature and connectivity of distributed knowledge throughout different domains 
(engineering, marketing, production, etc.), company divisions and within today’s virtual enterprises. 
New and evolving knowledge must be related and integrated efficiently within synthesis methods, 
leading to new requirements for highly dynamic knowledge creation and evolution as well as 
integration of interrelated knowledge. The aim of this paper is to motivate and describe new 
requirements for representing engineering knowledge in formal synthesis methods to capture more 
fully both product and process knowledge as well as facilitate their integration into a new framework 
for networking, reusing and evolving distributed knowledge. First, the paper reviews current research 
in formal approaches to supporting engineering knowledge needs in synthesis and innovation as well 
as the relation to the wider areas of knowledge based engineering (KBE) and knowledge management 
(KM). Next, a model for computational design synthesis based on engineering design grammars is 
presented including a discussion of the types of knowledge involved. Extensions to this model are then 
proposed to integrate important aspects of the knowledge lifecycle, namely networking, exchanging 
and evolving formalized multi-domain knowledge for computational synthesis. The paper concludes 
with a discussion of future perspectives. 

2. Background 
This section reviews research in the areas of knowledge-based engineering (KBE) and engineering 
design grammars, which both contain the integrating topic of engineering knowledge representation. 
Further it discusses key ideas stemming from KM to support engineering design and product 
development that have potential to be extended to computational synthesis. 

2.1 Formal engineering knowledge representation and use 
Much research has been done in knowledge representation in engineering; a summary of approaches is 
given in Szykman et al. [2001] and Fenves et al. [2005]. Such knowledge representations generally 
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rely on the fact that human knowledge, and in particular expert domain knowledge is modular, for 
example consisting of perceptual chunks or production rules. While cognitive scientists have shown 
justification for representing knowledge modularly, it is also recognized that “knowledge chunks” are 
highly interdependent when used in problem solving [Newell 1990]. To support product development, 
Szykman et al. [2001] propose a generic product knowledge representation with a focus on 
incorporating function models, design rationale and relationships between knowledge. The same 
research group later developed the Core Product Model (CPM), at the information model level, that is 
capable of capturing all product information within the product lifecycle to provide a base product 
model that is not specific to any application, software or product development process [Fenves et al. 
2005]. Further, the MOKA project (Methodology and tools Oriented to Knowledge based 
Applications), that preceded CPM but shares conceptual ideas, aimed at developing a general 
framework for structuring and representing engineering knowledge [Klein 2000]. A two pronged 
representation was developed: an informal model that used a structured, natural language 
representation of engineering knowledge and a formal model using the Unified Modeling Language 
(UML). In the informal knowledge representation, which is purely text based in Illustration, 
Constraints, Activities, Rules, and Entities (ICARE) forms, relationships between entities are modeled, 
e.g. indicating relations between an assembly and its parts. The informal knowledge must then be 
transformed into formal knowledge through the assistance of a knowledge engineer. 

2.2 Knowledge based engineering (KBE) 
The term KBE has been used in two different ways in both academic research and industry. The 
original use stems from expert systems where symbolic systems were created to encode domain and 
problem-solving knowledge that could automatically be reasoned about using an inference engine to 
solve synthesis, diagnosis, analysis and planning tasks [Dym & Levitt 1991]. The more recent use of 
the term is less restrictive and can refer to any process-related or reference knowledge used within 
CAx tools [Fenves et al. 2005]. From an industry perspective current CAx tools claiming KBE 
capabilities use this more relaxed definition including, for example, automating parametric modeling 
and modification of geometry. Knowledge exists in limited forms as contained in product models, 
templates, parametric models, scripts, constraints and to a less commonly in design rules and case 
libraries. However, this level of knowledge representation is not standardized, is tool dependent and 
generally not suitable for exchange or common processing and therefore limited for distributed use.  
Current increased use of KBE and parametric modeling in CAD tools gives initial indication that it is 
possible for engineering knowledge to be formalized by engineers while they work in a familiar 
software environment, such as a CAD tool. Examples illustrate the benefits of automating routine 
design tasks, e.g. the BAe Airbus wing rib design KBE tool, which generates ribs automatically in any 
location on an airplane wing [Cooper et al. 2001]. The capture of knowledge, however, is limited to 
knowledge that can be associated with geometry and the problem-solving knowledge is related to a 
routine design task of a single part or component, often in the detail design stages and only from the 
perspective of one domain. These limitations can also be found for mainstream commercial software 
that is starting to provide capabilities for implementing design rules and rule bases, e.g. CATIA 
Knowledgeware or NX Knowledge Fusion. 
In routine design tasks typically both the knowledge sources and problem solving strategies are 
known. While supporting routine design, problem-solving is based on retrieving and directly using 
well-organized knowledge. However, in order to support non-routine design, knowledge sources or 
problem solving strategies may not be known and one must be able to combine knowledge in new 
ways [Brown 1996]. 

2.3 Computational synthesis and engineering design grammars 
Synthesis can be thought of as creating form, or product structure, to fulfill desired behavior and 
function [Starling & Shea 2005]. It is the creative step itself, the conception and postulation of 
possibly new solutions to solve a problem [Antonsson & Cagan 2001]. Previous work in formal 
methods for computationally-based design synthesis was aimed at aiding designers in developing 
better products faster through rapid generation of spaces of optimized, simulation-driven designs. 
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Generation can be both fully automated and semi-automated. New design alternatives produced as a 
result of the methods are targeted at both providing novel solutions, outside a designer's own 
experience and sparking innovation. Methods often support lateral thinking and expanding the range 
of perceived design and performance limits. Examples provided in Antonsson & Cagan [2001] and 
Chakrabarti [2002] use different forms of formal knowledge representation and methods covering 
applications to structures, consumer products, automotive styling, microelectromechanical systems 
(MEMS), digital VLSI (very large-scale integration), and chemical processes. Examples of the 
authors’ work are mechanical gear systems [Starling & Shea 2005], structural systems [Antonsson & 
Cagan 2001] and MEMS [Bolognini et al. 2006], all of which are based on the combination of design 
grammars, automated simulation and multi-criteria search.  
Engineering design grammars are a production, or rule-based, system and overlap with KBE. A 
uniform characterization of production systems, including shape and graph grammars, can be found in 
Gips & Stiny [1980]. The examples that can be found in this area, however, are generally restricted to 
the perspective of a single domain. In addition, the systems are often time intensive to implement and 
many engineering design grammars are pre-compiled before use, which means that the embedded 
knowledge remains static. The designer can only influence the design generation through changing the 
initial design and the search model used to find good designs within the language. Two approaches to 
overcome this and enable knowledge evolution are: (1) supporting emergence and learning of 
emergent rules and (2) grammar interpreters, which enable designers to describe new rules that can be 
compiled with the current rule-base. One approach to creating and compiling engineering graph 
grammars, called "Design Compiler 43", focuses on providing a domain independent representation 
for conceptual design [Alber & Rudolph 2003]. In a graph-based representation approach, Campbell et 
al. [2007] provide in GraphSynth a GUI-based graph grammar rule specification and common engine 
for recognizing and applying rules to designs. In Bolognini et al. [2006] a modular system is 
developed to enable straight-forward customization of the primitives, or vocabulary, used within 
synthesis. However the general graph transformation rules used for synthesis remain static. Finally, 
little work has been done in supporting recognition and learning of emergent grammar rules. 

2.4 Knowledge Management 
The overall goal of knowledge management is to enable an organization to best exploit its intellectual 
capital, both past and present [McMahon et al. 2004]. Approaches to KM include organization, 
management and technology views. The assumptions of many of the original approaches in KM 
research, called first-generation KM, were that valuable knowledge existed that must be codified so 
that it can be accessed in the future and re-used [McElroy 2002]. This has been termed the commodity 
view of knowledge that considers knowledge as an object to be collected and managed. Since it is 
commonly believed that knowledge is defined in working practice through activities and 
collaborations among workers, a new generation of KM has emerged that takes a more holistic 
perspective to include people and processes and focus on new knowledge production and integration 
[McElroy 2002]. This is termed the community view of knowledge that, by contrast, assumes it is 
impossible to define knowledge universally, or think of everything up-front, to compile a massive 
knowledge system that can then be deployed in a company. Rather, knowledge personalization is 
imperative. Research in KM in computer science shares the community view of KM where technology 
support should assist workers to constantly create and share new knowledge as they work [Fischer & 
Ostwald 2001]. 
Knowledge management in product development, specifically engineering design, creates many added 
complexities, e.g. the integration of diverse disciplines, high level of technical content in addition to 
business and organizational content and the globally distributed nature of product development today. 
A review of research in this area is provided by McMahon et al. [2004]. Culley & McMahon [2006] 
note that creating and sharing knowledge is essential to promoting innovation in engineering design 
and identify conceptual design as the key, yet most difficult area where embedding knowledge in 
design systems for design automation could have the most benefit.  
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2.5 Summary 
To summarize, knowledge representation in engineering design links formal, computational synthesis 
methods, KM and KBE research. Review of literature illustrates that capturing knowledge across all 
activities in product development leads to a very diverse set of knowledge types and taxonomies 
covering both product and process foci. CAD tools now incorporate parametric modeling and limited 
capabilities for KBE where designers can encode their own design rules to automate small-scale 
routine design tasks. The limitations are, however, that they are difficult to update, extend to 
representations not based on geometric models alone, network knowledge among heterogeneous CAx 
tools and evolve formalized knowledge across domains. Engineering grammars supporting synthesis 
tasks in innovation processes are mostly limited to pre-compiled sets of grammar rules or vocabularies 
of components as well as limited to a single knowledge domain, e.g. engineering, styling or 
production. The commodity view of knowledge where past knowledge is captured, stored and 
managed is insufficient for supporting synthesis tasks within innovation processes. While it can be 
argued that many methods incorporate only fundamental knowledge, with rapid advances in new 
technologies even fundamental knowledge grows. Recent changes in KM towards the community 
view of knowledge should be considered now within the context of computational synthesis methods 
and tools. KM research in computer science indicates the advantages of formalizing new knowledge 
while working, where formal knowledge is then owned and evolved by communities. Such research 
also shows, although in less technical domains, that it is possible to support both personalization and 
codification of knowledge simultaneously [Fischer & Ostwald 2001]. 

3. Computational design synthesis and formal knowledge representations 
Drawing from several sources, synthesis is defined here as the combination of fundamental 
components, or building blocks, to produce a unified and often complex system that efficiently 
exhibits at least the required behavior, in a conventional or novel way, which is especially important 
for innovation. Figure 1 illustrates a model for formal engineering design synthesis extended from 
previous research by the authors that was based on a bottom-up viewpoint of design synthesis. The 
model combines the use of engineering design grammars, a function-behavior-structure (FBS) 
representation, integrated simulation, design performance models and multi-criteria search algorithms. 
Engineering design grammars, the core of the model, combine product knowledge representations with 
problem-solving knowledge represented as grammar rules. The use of grammars to assist design is 
conceptually simple. In the same way as a natural language is based on symbolic representations 
(alphabet and words) and rules (grammar), it is also possible to develop a language of designs via 
design (or engineering design) grammars. Starting with a legal construct, repeated application of 
different grammar rules generates new designs. The combinatorial expansion of all valid sequences of 
grammar rules applied to a starting symbol is termed the design language. 
Using the model shown in Figure 1, first, requirements (Q) for the synthesis task are defined and 
mapped into a quantitative performance model (P) that can include design objectives and constraints, 
similar to a multi-criteria optimization model. Starting with an initial design, either an empty model or 
a current solution, control of synthesis is driven by an inference engine, as used in KBE systems, by 
human designers, or by search algorithms. While an inference engine provides deterministic problem 
solving and single solutions, search provides the potential for generating a set of optimized solutions. 
Engineering design grammars are used to define transformation rules (R) and vocabularies (V), that 
form the basis of a knowledge library, to generate designs described through both function models (F) 
and structure models (S) in parallel, which are interconnected by the behavior (B) of the design. The 
FBS model [Umeda et al. 1990] provides a knowledge representation scheme for flexible functional 
modeling separated from, but interconnected with, structure and behavior representations. The 
behavior model is simulated and the resulting performance models (P) are evaluated. In combination 
with further performance models, in addition to simulation-based evaluation, quantitative performance 
of a current solution is determined. Using multi-criteria search combined with engineering grammars 
enables the generation of optimal designs within the design language that meet defined requirements 
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and optimize performance objectives, which can describe behavior, efficiency, cost, aesthetics and 
manufacturability [Starling & Shea 2005]. 

 
Figure 1. Model for formal engineering design synthesis 

To create new formal engineering knowledge representations for design synthesis with a focus on 
supporting dynamic knowledge and relationships among knowledge, extended requirements are now 
defined. They include supporting multiple levels of abstraction for use in a wider range of tasks, 
explicitly representing relationships, among domains and knowledge sources, supporting multi-
domain knowledge, supporting rapid modification and evolution of knowledge, and enabling 
knowledge to be networked, exchanged, re-used and evolved. The representation should be easily 
created, updated and evolved by engineers while they work, applicable to a variety of design tasks and 
capable of incorporating dynamic influences from related domains of production and market 
requirements. Finally, formal product knowledge representations should be compatible for integration 
with CAx tools where possible, i.e. in terms of current capabilities for geometric modeling and product 
structures (assemblies and subassemblies). The outcome will lead to standardized, flexible, formal 
knowledge representations for product and process knowledge, with a focus on design grammar rules 
and their relationships to other knowledge chunks, such that they can be, in the long term, processed in 
a common way by distributed CAx tools. 
The formal knowledge needed for the synthesis model shown can be divided into product and process 
knowledge. Product knowledge includes function (F), structure (S) and behavior (B) models of an 
artifact along with product specifications, requirements, and constraints, which are mainly represented 
within Q, P, and V. Process knowledge includes design rules (R), strategies, automated model 
mappings, analysis scripts, problem-solving algorithms, e.g. constraint solvers, generative algorithms 
and search methods. Within the scope of the synthesis model presented and engineering grammar 
formalisms, product knowledge is focused around definition of the vocabulary of the design language 
while process knowledge facilitates computational processing of product knowledge through both 
design rules (R) and the many model mappings and problem-solving algorithms included. Product 
knowledge in Figure 1 is depicted by several layers to indicate the inclusion of several levels of 
abstraction. Constraints, a central and often driving component of computational synthesis methods, 
are modeled in both the design vocabulary (V) and design rules (R). The elements inside the boundary 
shown in Figure 1 are internal to the computational synthesis method and are “driven” by the external 
knowledge contained in Q, R and V, which are updated dynamically. For example, adding knowledge 
of a new component to the vocabulary requires definition of how the component should model itself in 
terms of FBS models as well as definition or extension of the grammar rule set to make use of the new 
component in synthesis. Finally, relationships between all knowledge chunks, product knowledge to 
product knowledge, product knowledge to process knowledge, and process knowledge to process 
knowledge must be supported in the formal representation. Such relationships can be determined and 
specified manually or automatically detected using agent-based and data mining approaches. 
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4. Networking and evolving formal engineering knowledge 
Throughout the entire innovation process, the knowledge lifecycle is subject to several dynamic 
influences through which knowledge is evolved over time (Figure 2). Knowledge is first captured and 
formalized, then networked for re-use by multiple people and, over time evolved. Knowledge 
evolution is influenced by exchange of formalized knowledge with other domains, e.g. production, 
service, and marketing, so that inter-relations are taken into consideration during the synthesis process. 
To network knowledge, a new high level IT framework is required that provides capabilities for 
networking, exchanging and co-evolution of formalized, distributed engineering knowledge 
throughout the innovation process. 

 
Figure 2. Networking, exchanging and evolving 

formalized knowledge throughout the knowledge lifecycle 

For example, engineering grammars, are generally limited to encoding design rules for small 
subsystems or a single domain, e.g. gearboxes or automotive body styling, but not the vehicle as a 
whole. Engineering grammars can also be created to generate custom gearbox housing, car bodies, 
chassis, etc. Small grammars for each subsystem that encode the product and process knowledge of 
that subsystem can then be networked to rapidly generate larger scope conceptual designs. Grammars 
can also be developed across domains, e.g. a grammar that encodes the manufacturing viewpoint and 
multi-domain grammars added to describe not only all valid but all feasible designs from a 
manufacturing viewpoint. Related, distributed knowledge must be exchanged continuously with other 
domains throughout the lifecycle, e.g. a grammar encoding manufacturing capabilities of the vehicle 
body is related to the design rules governing automotive styling and space allocation tasks of 
components under the car hood. Introduction of new knowledge concerning engine types, e.g. 
inclusion of hybrid engines impacts the knowledge required for gearbox configuration. A networked, 
multi-domain approach to knowledge representation in engineering grammars offers potential to 
increase the scale of computational design synthesis and incorporate multiple viewpoints. 
As a result of the knowledge lifecycle, the computationally defined design language, or design space, 
does not remain static any longer but evolves over time according to dynamic influences, e.g. new 
market requirements and production capabilities (Figure 3). The design language grows over time 
continuously integrating new knowledge that often results in a larger space of possible solutions. 
Further, given a set of new requirements, the design language can be used to determine if no solutions 
exist that meet the new requirements identifying the need to either increase capabilities and modify the 
modeled knowledge or refine the requirements. 
A further example is that of mechanical wristwatches. A mechanical wristwatch consists of the gear 
system, power source, watch hands, case, and watch strap. In the authors’ previous work [Starling & 
Shea 2005], the vocabulary and rules to generate basic watch gear systems were defined and 
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implemented upfront. However, new knowledge is constantly being generated, e.g. new components, 
new production technologies, new materials and changing market requirements. The synthesis system 
and therefore the underlying knowledge representation must dynamically evolve, e.g. include new 
components and rules for generating new watch functionalities to meet new requirements, e.g. a date 
display functionality, a chronograph functionality or use of alternative power sources, e.g. 
photovoltaic. This requires evolving the product knowledge, i.e. vocabulary of new components and 
the process knowledge, i.e. how to use new components in design synthesis, to expand the design 
language. Knowledge of new production knowledge can also enhance the design language for 
example, by changing production constraints on components.  
A further benefit of formalizing and networking knowledge is to avoid informal knowledge exchange 
face-to-face, by phone or by email with a subsequent recreation of the knowledge formalization in the 
target software system. While this can be achieved initially through experts themselves formalizing 
knowledge, in the long term in order to achieve true benefits, automatic capture, formalization and 
networking of explicit engineering knowledge created by engineers while they work is required. 
Having engineering knowledge formalized also is a pre-cursor to digital knowledge exchange and 
manual re-use of up-to-date knowledge among heterogeneous CAx tools in new tasks and domains. 

 
Figure 3. Evolving design language 

5. Conclusion 
Innovation processes are knowledge-intensive and dynamic due to their continuous creation and 
evolution of new knowledge. In order to move computational synthesis methods to truly support 
innovation processes requires consideration of the dynamic aspects of engineering knowledge that is 
generated, inter-related and used during the process. Appropriate formal engineering knowledge 
representations and a framework for integrating and re-using distributed knowledge in innovation 
processes are required to accelerate integration of new and evolving knowledge as well as the rapid 
derivation of computationally defined design languages.  
A networked, multi-domain framework for design synthesis is speculated to offer potential to increase 
the scale of knowledge captured in the definition of grammar vocabularies, identifying relationships 
between vocabularies and rules as well as the ease of modifying and evolving engineering grammars 
throughout the innovation process. Further, it is aimed to support communication and cross-
fertilization of knowledge across domains and departments as well as enable co-evolution of rule sets 
across domains. This would provide engineers with the power of collective knowledge of the whole 
rather than purely the knowledge they have formalized and encoded themselves. The approach would 
unlock the potential of many engineers formalizing their knowledge while working, networking and 
re-using knowledge as well as evolving formal engineering knowledge as a collective body of 
engineers in the extended enterprise. 
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