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1. Introduction 
Nowadays, car electronic architectures become more and more complex and carmakers outsource the 
design of electronic modules to automotive electronic suppliers. The software part of these modules 
accounts for more than 80% of the total number of defects detected on these modules. In software 
development [Bertolino 2007] and as illustrated in [Awedikian 2007], a loop-type design process is 
initiated between the carmakers and their suppliers. After each delivery, carmaker detects some “bugs” 
(called also software defects). Once an electronic module is launched on the market (i.e., integrated 
into a vehicle), an average of one “bug” per year is detected by the end-users, which may become 
dramatic for the electronic supplier in financial terms. Therefore, finding bugs earlier in the 
development cycle and reducing the number of bugs detected by carmakers and end users is a priority 
for automotive suppliers. In fact, the number of bugs detected later in the development cycle is one of 
the major metrics used by carmakers when choosing their suppliers. 
In this paper, we start by a brief presentation of the software development cycle in the automotive 
electronic supplier (Johnson Controls). A detailed analysis of the present industrial approach to design 
tests for software functional testing can be found in [Awedikian 2008]. Nowadays, testers design 
manually test cases which is strongly dependent on the experience of these testers. In the second 
section, we develop a new approach and a corresponding software platform to improve the design of 
test cases. It is mainly based on modelling software specifications, focusing on critical tests to be done 
(because of their higher probability to reveal a bug) and monitoring the automatic generation of tests 
by quality indicators. The simulated software specifications model has already been presented in 
[Awedikian 2008]. In the third section, we define a framework to model the behaviour of a driver 
using a specific software functionality. We propose, in the fourth and fifth sections, to reuse 
capitalized software defects and test cases on a specific functionality to design efficient tests. 
Therefore, in the sixth section, we develop a framework in order to superimpose on the specification 
model some statistical data concerning the drivers’ behavioural profiles and returns of experience in 
terms of bug detection for similar products. This enrichment of the specification model allows driving 
the generation of relevant tests in terms of their probability to reveal existing bugs. In the seventh and 
eight sections, we specify the automatic tests generation and propose a set of quality indicators to 
monitor and assess the quality of generated tests and for deciding when to stop the tests. In particular, 
we propose an indicator of functional specifications coverage which is an important contributor to the 
perceived quality by the carmakers. Lastly, we compare the results of an industrial case study, in terms 
of quality and efficiency, where both the conventional and our new test design approaches have been 
applied. 
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2. Software development cycle 
At Johnson Controls, the lifecycle of a software product is divided into 5 global stages (see figure 1): 
Request For Quotation -, Design, Design Validation, Production Validation and Production. 

 
Figure 1. Overall software product lifecycle (this figure is voluntarily fuzzyfied for confidentiality reasons) 

Within each stage, engineering activities are performed according to the standard V-cycle of the 
software industry (see figure 2) and in an iterative way in order to take the carmaker constraints and 
requirements priorities into account. The main engineering processes are Requirements specification 
and management, Global design, Component development, Integration and Validation. 

 
Figure 2. Elementary V-cycle for any of the global stages of the software lifecycle 

We notice that each of the development, integration and validation processes perform software testing 
activities in order to verify and validate the correctness of the software delivered at the end of the 
process. In [Beizer 1990], the author discussed most software testing techniques (black and white box 
testing). Software defects are detected in each of these processes, analyzed, corrected and capitalized 
in the huge bugs database of the company. 
The software testing activity consists in: 

1. Analyzing carmaker requirements: testers who need to design tests, must first read, analyze 
and understand carmaker requirements. 

2. Designing test cases: presently, testers proceed to a manual design of test cases. The 
performance of this activity is mainly based on the experience of the testers. The reader can 
find in [Awedikian 2008] more details on how testers presently design test cases. 
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3. Simulating test cases on software product and detecting software defects: once test cases are 
developed, they are simulated on the software product in order to check that they are ok and as 
free of bugs as possible. 

What is a “client functionality”? 
A “functionality” is a set of services delivered by the software product. A functionality is specified by 
a set of inputs, outputs and a set of requirements. A “client functionality” is a functionality that 
delivers service to the clients (carmakers and/or drivers). For example, the door lock management 
functionality. 

What is a “Test Case”? 
Let’s consider a client functionality with two input signals: I1(with domain D(I1)={0,1}) and I2 
(D(I2)={1,2,3}). We first call “operation”, the fact that an input signal is set to a value. For example, 
I2=3 is an operation. A “test case” is the succession of k operations separated by time intervals and the 
expected results on output signals after each operation. 
An excerpt from a test case designed is given in Figure 3: 

1. In test step 96, testers wait for 500 ms without carrying out any actions on the product and 
check that the outputs of the product haven’t changed. 

2. In test step 97, testers activate a switch, wait for 200 ms and check that the concerned outputs 
are activated according to the expected behaviour. 

 
Figure 3. Excerpt from a test case (two operations) as designed by JCI testers 

3. A new platform for automating software tests generation 
Our new platform of automated software test generation presents a much different workflow for 
generating test series than the present one (see figure 4). The new workflow is based on six activities 
which are manual, semi-automatic or automatic and managed by different individuals (requirement 
engineers and testers). These activities are : 

1. Represent the carmaker functional requirements in our unique model of functional 
requirements 

2. Define some behavioural characteristics of a car driver when using the tested client 
functionality.  

3. Perform a statistical analysis on bugs and test cases respectively detected and developed in the 
past on the same functionality. 

4. Highlight the relevant, critical and mandatory test cases to be chosen from the test design 
space of the client functionality. 

5. Automate the generation of test cases from the enriched model (by stages 2 to 4) of functional 
requirements. 

6. Manage the test generation with cost, delay and quality indicators. 
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Figure 4. Our new approach to automatically design relevant test cases 



DESIGN SUPPORT TOOLS 575

In [Awedikian 2008], a detailed presentation of our unified model for modelling and simulating the 
software functional requirements can be found. The major concepts (input, intermediate, output 
signals, elements, decision table, finite state machine, and clock) are introduced, the verification and 
validation activities and the functional simulation of this model are presented. In the following, we 
further detail the data enrichment of this functional specification models and the resulting generation 
of relevant test cases for revealing as many bugs as possible. 
In [Utting 2006], we can find a survey on model based testing techniques and tools. 

4. Definition of user (driver) profiles 
We analyzed a set of software defects detected by carmakers and by end users (drivers) and we came 
up to the conclusion that some of these bugs need specific tests to be detected. These tests must 
simulate operations regularly done by the final user of the product. The literature review [Musa 1993] 
reveals that it is possible to estimate the reliability degree of a software product by analyzing the bugs 
occurrence when testing with a user approach. In fact, making a good reliability assessment or 
prediction depends on testing the product as if it were in the field. A stopping criterion based on 
estimated reliability and confidence is presented in [Dalal 1988]. This criterion relies on reliability and 
cost target and needs an appropriate data collection on detected bugs. We develop three types of 
constraints that engineers can affect to an input signal in order to, when generating automatically test 
cases, eliminate or favour specific “successive” operations. These constraints aim to reduce the 
number of possible combinations on input signals and to more thoroughly pinpoint which ones have a 
high potential to detect bugs. These three constraints are: 

• Logical constraint: this constraint forbids that an input signal switches between inadequate 
values from a use point of view. That is why, we classified input signals into two types: 

 Acyclic: let’s consider the signal X, which has a domain D(X)={1,2,3}. An input 
signal is acyclic if, at any moment, all the operations (X=1 or X=2 or X=3) on the 
signal are possible. 

 Cyclic: let’s consider the signal Y, which has a domain D(Y)={1,2,3}. An input signal 
is cyclic if future operation (X=1 or X=2 or X=3) on the signal depends on the one did 
in the past. 

• Succession constraint: in practical use of an electronic product, two or more operations must 
intuitively succeed. For example, close the driver door and switch on the car engine. Through 
this type of constraint, we favour such successive operations. 

• Conditional constraint: this constraint characterizes a specific user behaviour between two or 
more correlated input signals. In other words, when one or more inputs fulfil specific 
conditions, the domain of other inputs is automatically adapted. 

5. Statistical analysis of capitalized bugs and test cases 
Using capitalized bugs and test cases seems to be beneficial in automotive context since more than 
50% of functionalities performed by software product are common to any series of cars. Therefore, 
when testing a client functionality that we already implemented in the past on another project, it is 
judicious to: 

• Avoid recurrent type of software defects. In fact, when testing a client functionality, we 
classify detected bugs from two points of view: 

 Functional classification: this type of classification enables to identify critical 
functional requirements of a client functionality where software developers are liable 
to introduce bugs. Consequently, these requirements must be tested mandatorily. 

 Structural classification: we have defined bug categories adapted to efficient retrievals 
of similar (related to the same cause) bugs. Consequently, we can better address the 
problem of detecting bugs by generating specific tests to check the non-existence of 
recurrent bugs in the software under test. After a literature review on bugs 
classification and root cause analysis (see [Freimut 2001]), we identify a set of 8 bug 
categories well adapted to our context: requirements bugs, control flow and 
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sequencing, processing, data, code implementation, integration, system and software 
architecture, test definition or simulation bugs. The result of such a classification help 
testers to establish stopping test criteria based on quality objectives and, in 
consequence, to generate test cases with a high probability to detect recurrent bugs. 

• Reuse existing test cases. In a software organisation, test cases management and reuse are one 
of the main characteristics of a high maturity level. For a client functionality under test, our 
new testing platform is able to analyze test cases developed in the past for similar 
functionalities and identify recurrent and critical test scenarios. Consequently, when 
generating a new set of test cases for this functionality, we reduce the test design space by 
focusing on these scenarios based on our returns of experience. 

6. Enrichment of the specification model with knowledge on driver recurrent 
operations, critical requirements and testers experience 
Once constraints on inputs are defined for the client functionality under test (see section 4), ancient 
bugs and existing test cases which related to previous projects of similar products are statistically 
analysed (see section 5). In order to enrich the specification model, we propose to set probabilities 
between all possible successive operations of a client functionality. To do so, we build a matrix that 
we name “Operation Matrix” which is a square matrix with all possible operations in columns and in 
rows. Between the two operations of a pair we define: 

1. The probability that two operations are in sequence. 
2. The time between two operations, modelled as an interval of possible values (a uniform 

probability) 
Let us consider a client functionality with 3 input signals: I1 (with domain D(I1)={0,1}), I2 
(D(I2)={1,2,3}) and I3 (D(I3)={0,1}). The “operation matrix” associated to this example can be seen 
in figure 5. 

 
Figure 5. Operation matrix 

7. Automatic generation of test cases 
Once the simulated model of software requirements is ready and “Operation matrix” are established, 
generating automatically a test case requires to generate a set of test steps until the stopping criteria are 
reached. Two automated activities are necessary to generate a test step: 

1. Perform a Monte Carlo simulation on “Operation matrix”. Two steps are required: 
 Step 1: an operation is chosen according to the probabilities on successive operations. 

For the first time, an operation is randomly chosen. In software testing [Marre 1992], 
this technique is known under the statistical testing technique.  

 Step 2: the inter-operation time is also randomly chosen within the time interval. 
2. Simulate the functional requirements model and assess the expected values that must be 

checked on output signals. In [Awedikian 2008], we develop in details the functional 
simulation mechanism of our unified model. 
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8. Monitoring the test case generation by a set of quality indicators 
Testing software exhaustively remains a very hard problem. Therefore, software testing must often be 
based on specific assumptions and objectives which help practitioners and managers to decide when to 
stop testing protocol. Therefore and in order to monitor the test case generation, we define some 
indicators related to the quality of a test case. In our approach, testers can generate test cases according 
to their objectives in term of: 

• Structural (code) coverage (see figure 6): the coverage rate of statements (lines of code), 
procedures, conditions (control flow) and decisions in the software product under test. A 
survey on code coverage based testing tools is done in [Yang 2006]. This is the solution 
currently used in JCI company. 

 
Figure 6. Structural (code) coverage indicators 

• Functional coverage: A stop testing criterion based on covering software specification was 
proposed in [Offutt 1999]. He primarily discussed the transitions coverage of a graph-based 
specification. In our approach (see figure 7), we consider the coverage rate of functional 
requirements (Decision Table and Finite State Machine elements) but also the coverage rate of 
signals (inputs, outputs, intermediates) domains and operation matrix (successions between 
pairs of operations visited). Such indicators help practitioners and managers to assess the 
quality of the software under test. 

• Tests cost: Presently, in automotive industry, the time and money spent to test a software 
product is the major criterion to stop testing. In our approach, since we automatically generate 
test cases, we only consider the time and money spent to simulate the generated tests on the 
software product. In [Chavez 2000], the author discusses a cost-benefit stopping criterion. It is 
based on estimating the defects remaining in the system, the cost to repair them both before 
and after release, and the carmaker dissatisfaction. As a perspective, it seems interesting to use 
a more advanced cost model of tests and bugs in order to improve our model of stopping 
criteria. 

In definitive, we have developed a panel interface to allow the test designer to set precise targets on 
the three subsets of quality indicators (15 indicators). The quality indicators are most of the time 
expressed in terms of ratios of coverage and, then, are normalized indicators which aim to reach a 
value of 100%. During one test generation session, the targets may be completed following different 
orders and the first target completed does not immediately stop – this is not a hard limit – since we 
stop only when the aggregated preference (F) of these indicators (Q) has attained a minimal value: 

iCurrentetT pQQF ×−=∑ arg  with pi being a set of weights. 
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Figure 7. Functional coverage indicators9. A case study to validate our new approach 
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Let us consider a practical software testing problem. It consists in verifying that the developed 
software product is compliant to the carmaker software functional requirements. The studied client 
functionality consists in managing the front wiper in a vehicle. This functionality is implemented with 
other functionalities in an electronic product, named body controller module. 
In our case study, we isolate the software component which fulfils the front wiper functionality and we 
test it through our approach. This component is made of 1229 Lines of code (blank and comment lines 
excluded), 18 input signals and 8 output signals. This functionality has already been tested with the 
conventional approach of manual test design in Johnson Controls and 22 software defects were 
detected until the last carmaker delivery of the software product. 17 bugs were detected by the 
Johnson Controls software testing processes and 5 bugs by the carmaker after intermediate delivery. In 
the figure 8, we show the distribution of bugs detected on each intermediate carmaker delivery. It must 
be noted that, after developing the software product for the first time, only 12 bugs were detected 
during the first software testing stage. Therefore, a delivery was performed and the carmaker 
immediately detected 2 more bugs. In the meantime and before the second carmaker delivery, testers 
tried to improve their test cases and designed some new tests. In consequence, they have been able to 
detect one more bug and after the second intermediate carmaker delivery, no new bug was detected by 
the carmaker. The complete scenario of bugs detection until the last carmaker delivery is summarized 
in the histogram of figure 8. 
We estimate the time spent to analyze carmaker requirements, design and simulate test cases and 
manage internal and carmaker detected bugs. We note that more than 50% were spent to manually 
design test cases and 10% to manage bugs detected by carmakers. Approximately 54 eight-hour days 
were spent to fully test the front wiper functionality using the current Johnson Controls testing 
process. 
Our new testing approach is much different and leads to notably improved results. We start with the 
first version of the software component before the Johnson Controls testing phase. We first model the 
software functional requirements of the front wiper functionality, then we design automatically two 
operation matrix: 

• A “nominal” operation matrix which allows all successions of two operations with the same 
succession probabilities. According to experts, we define one standard time interval and we 
affect it to all successive operations. 

• A “driver profile” operation matrix which eliminates successive operations not used by end 
users (drivers) and favours specific recurrent operations with specific time interval. 

Therefore, we define a test plan that we perform on the first version of this software component: 
1. Firstly, we generate six test cases from the “nominal” operation matrix with the objective of 

covering at 100% the input, output and intermediate signals domains, the functional 
requirements in decision table and finite state machine elements and the operation matrix.  

2. Secondly, we generate six test cases from the “driver profile” operation matrix, with the 
objective of covering at 100% the operation matrix. 

Figure 8 illustrates the bugs distribution in the case where our approach would have been applied since 
the beginning. 16 bugs over the 17 bugs (94%) which were detected by Johnson Controls all along the 
6 testing stages have been directly detected here. In addition, 3 bugs over the 5 bugs (60%) detected 
by the carmaker along the carmaker deliveries have been directly detected by our platform. Moreover, 
we have also detected 5 “minor” bugs that were not detected by Johnson Controls nor by the carmaker, 
and which were, in definitive, delivered to the carmaker. In addition, we have analyzed the three bugs 
that our approach didn’t detect and we come up to the conclusion that these bugs could be detected by 
our approach since we reach a 100% of functional coverage. These non-detected bugs are related to 
specific functional requirements that weren’t covered by our generated test cases. Indeed, when 
generating tests, our computational algorithms didn’t succeed to reach 100% of functional coverage 
(maximum of 85%). To overcome this lack, we plan to improve our computational algorithms in order 
to focus on covering the non-covered zones of the specification. 
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Figure 8. Bugs occurrence when using our approach to design test cases vs the conventional one 

In addition, the results of this case study confirm the necessity to generate tests with a driver profile 
strategy. Indeed, through the test cases generated from the “nominal” operation matrix, we detect 18 
bugs and 6 more bugs were detected when simulating the test cases generated from the “driver profile” 
operation matrix. 
As a conclusion of the case study: 

• We increase by 100% the number of bugs detected since the first testing phase (from 12 to 24 
bugs) 

• We decrease by 60% the number of bugs detected by the carmaker (from 5 to 2 bugs) 
• We increase by 40% the number of bugs detected by JCI (from 17 to 24 bugs) 
• We detect about 20% of new bugs (5 over 22 bugs). These new bugs are “minor” and they 

were not detected by JCI nor by the carmaker 
• We reduce by 25% the time spent in testing the software (from 54 to 41 eight-hour days) 

In fact, across our new software testing approach, the image of Johnson Controls in front of carmakers 
will be improved and as a direct impact, the number of tenders will grow. 

10. Conclusions and perspectives 
In this paper, we propose an approach to design efficient and intelligent test cases for software 
product. The basic of this approach is to represent formally software functional requirements and to 
reduce the test design space by focusing on important and critical tests to be done. The tests generation 
is automated and monitored by quality and cost objectives. Indeed, testers can generate test cases that 
fulfil a predefined set of objectives (in terms of functional requirements coverage, code coverage and 
test cost). A case study on historical data has also been developed in this paper and potential benefits 
have been highlighted. 
Some managers and practitioners were interested in implementing our software testing approach as a 
long term solution in their business units. Moreover, we were asked to implement some parts of our 
approach in the testing process of a new product scheduled for 2009. Consequently, we plan to 
strongly validate our approach, first by demonstrating the benefits of our approach through historical 
data (see the case study in this paper) and second by integrating our approach into the global design 
process of the company (implementation on future projects). To do this, we plan to develop a second 
larger case study on historical data from another type of product and client functionality. Then we 
have to assess on our approach statistical properties such as robustness, repeatability and 
reproducibility. We also plan to develop a model of software defect cost which takes the phase in 
which the bug was detected into account, its severity and occurrence, the cost and time spent to 
manage it and the impact on Johnson Controls image, carmaker and end user. This detailed cost model 
will allow estimating the return on investment (ROI) if using our proposed approach to test software 
products. Finally, we have to manage the change of the testers practices and activities. Indeed, testers 
technical skills will have to switch from a manual design to a high level modelling of test scenarios 
and objectives in using in a flexible manner our design platform. 
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